5038
A. Tanaka, T. Usuki / Tetrahedron Letters 52 (2011) 5036–5038
Supplementary data
Supplementary data (experimental procedures and character-
ization data) associated with this article can be found, in the online
References and notes
Scheme 4. Synthesis of 1. Reagents and conditions: (a) PfpOH, EDCꢀHCl, DMAP,
EtOAc, rt, 25 h, 83%; (b) (Boc)2O, DMAP, MeCN, rt, 7 h, 87%; (c) LDA, PhSeBr, THF,
ꢂ78 °C, then, H2O2, THF, rt, 1 h, 41% (2 steps from 20).
1. Edwards, D. J.; Marquez, B. L.; Nogle, L. M.; McPhail, K.; Goeger, D. E.; Roberts,
M. A.; Gerwick, W. H. Chem. Biol. 2004, 11, 817–833.
2. McPhail, K. L.; Correa, J.; Linington, R. G.; González, J.; Ortega-Barría, E.; Capson,
T. L.; Gerwick, W. H. J. Nat. Prod. 2007, 70, 984–988.
3. Gu, L.; Wang, B.; Kulkarni, A.; Geders, T. W.; Grindberg, R. V.; Gerwick, L.;
Håkansson, K.; Wipf, P.; Smith, J. L.; Gerwick, W. H.; Sherman, D. H. Nature
2009, 459, 731–735.
Table 1
Amide formation between 2 and 17 or 19 to produce 18 or 20 in THF at ꢂ55 °C to
room temperature
4. Graf, K. M.; Tabor, M. G.; Brown, M. L.; Paige, M. Org. Lett. 2009, 11, 5382–5385.
5. Jouin, P.; Castro, B.; Nisato, D. J. Chem. Soc., Perkin Trans. 1 1987, 1177–1182.
6. Cuiper, A. D.; Brzostowska, M.; Gawronski, J. K.; Smeets, W. J. J.; Spek, A. L.;
Hiemstra, H.; Kellogg, R. M.; Feringa, B. L. J. Org. Chem. 1999, 64, 2567–2570.
7. Ray, S.; Das, A. K.; Banerjee, A. Chem. Commun. 2006, 2816–2818.
8. Davidson, D.; Bernhard, S. A. J. Am. Chem. Soc. 1948, 70, 3426–3428.
9. Hosseini, M.; Kringelum, H.; Murray, A.; Tønder, J. E. Org. Lett. 2006, 8, 2103–
2106.
10. Ma, D.; Ma, J.; Ding, W.; Dai, L. Tetrahedron: Asymmetry 1996, 7, 2365–2370.
11. Decicco, C. P.; Grover, P. J. Org. Chem. 1996, 61, 3534–3541.
12. Smrcina, M.; Majer, P.; Majerová, E.; Guerassina, T. A.; Eissenstat, M. A.
Tetrahedron 1997, 53, 12867–12874.
Entry
17 or 19a
2 (equiv)
LiHMDS (equiv)
Time (h)
Yield (%)
1
2
3
4
17
19
19
19
1.5
2
2
1.5
1.5
2
9
5
5
4
34 (18)
46 (20)
54 (20)
70 (20)
3
3
a
1 equiv of 17 or 19 was used.
18 in 34% yield (Table 1, entry 1).9,20 Although the desired 18 could
be obtained as the major product, it was difficult to separate from
its byproduct due to similar polarity. In order to prevent the appar-
ent side reactions, the amino group in 17 was converted into the
bis-Boc product 19 with (Boc)2O in the presence of DMAP in 87%
yield. When amide formation between 2 and 19 was carried out
(Table 1, entries 2–4), three equivalents of amine 2 and one equiv-
alent of 19 by three equivalents of LiHMDS were found to give the
amide 20 in 70% yield (Table 1, entry 4). Formation of the enamide
was achieved by treatment with lithium diisopropylamide (LDA)
and phenylselenenyl bromide at ꢂ78 °C, followed by syn elimina-
tion of the selenoxide by treatment with hydrogen peroxide to af-
ford compound 1 stereoselectively in 41% yield over two steps.21–23
13. Vanotti, E.; Amici, R.; Bargiotti, A.; Berthelsen, J.; Bosotti, R.; Ciavolella, A.; Cirla,
A.; Cristiani, C.; D’Alessio, R.; Forte, B.; Isacchi, A.; Martina, K.; Menichincheri,
M.; Molinari, A.; Montagnoli, A.; Orsini, P.; Pillan, A.; Roletto, F.; Scolaro, A.;
Tibolla, M.; Valsasina, B.; Varasi, M.; Volpi, D.; Santocanale, C. J. Med. Chem.
2008, 51, 487–501.
14. Paik, S.; Carmeli, S.; Cullingham, J.; Moore, R. E.; Patterson, G. M. L.; Tius, M. A. J.
Am. Chem. Soc. 1994, 116, 8116–8125.
15. Kralj, D.; Friedrich, M.; Grošelj, U.; Kiraly-Potpara, S.; Meden, A.; Wagger, J.;
Dahmann, G.; Stanovnik, B.; Svete, J. Tetrahedron 2009, 65, 7151–7162.
16. Baoqing, L.; Franck, R. W. Bioorg. Med. Chem. Lett. 1999, 9, 2629–2634.
17. Krebs, O.; Taylor, R. J. K. Org. Lett. 2005, 7, 1063–1066.
18. Chen, J.; Fu, X.-G.; Zhou, L.; Zhang, J.-T.; Qi, X.-L.; Cao, X.-P. J. Org. Chem. 2009,
74, 4149–4157.
19. Chen, J.; Huang, P.-Q.; Queneau, Y. J. Org. Chem. 2009, 74, 7457–7463.
20. Jin, Y.; Liu, Y.; Wang, Z.; Kwong, S.; Xu, Z.; Ye, T. Org. Lett. 2010, 12, 1100–1103.
21. Andrus, M. B.; Li, W.; Keyes, R. F. J. Org. Chem. 1997, 62, 5542–5549.
22. Reich, H. J.; Renga, J. M.; Reich, I. L. J. Am. Chem. Soc. 1975, 5434–5447.
23. Data of 1: colorless oil; ½a D20
ꢁ
+86.1 (c 0.48, MeOH); IR (cmꢂ1) 3120, 2979, 2935,
2660, 1787, 1720, 1604, 1434, 1395, 1367, 1200, 1175, 1140, 1113, 1050, 1004,
825, 756, 704, 667, 607, 413; 1H NMR (500 MHz, CDCl3) d 7.18 (1H, dd, J = 6.2,
2.0 Hz, H22), 6.74 (1H, s, H18), 6.04 (1H, dd, J = 6.2, 1.5 Hz, H21), 4.85 (2H, ddq,
J = 6.8, 1.7, 1.7 Hz, H23), 3.89 (2H, m, H15), 3.72 (3H, s, H25), 3.13 (1H, m, H16),
3.05 (1H, m, H16), 1.51 (18H, s, t-Bu ꢃ 2), 1.44 (3H, d, J = 6.9 Hz, H24); 13C NMR
(125 MHz, CDCl3) d 175.8 (C17), 170.3 (C20), 164.9 (C19), 153.1 (C22), 152.5
(Boc), 126.1 (C21), 94.2 (C18), 82.2 (Boc), 58.3 (C23), 56.1 (C25), 44.3 (C15),
32.9 (C16), 28.2 (Boc), 18.1 (C24); ESI-HRMS (m/z) Calcd for C21H32N2O7Na
[M+Na]+ 447.2107, found 447.2108.
Conclusion
In summary, we achieved the stereoselective synthesis of the
peptide moiety 1 of the jamaicamides starting from natural amino
acids and utilizing Meldrum’s acid. The present study could also be
applied to the synthesis of palmyrrolinone, recently isolated from
cyanobacteria in Palmyra Atoll.24 Studies toward the first total syn-
thesis and stereochemistry of the C-9 methyl group of the jamaica-
mides are currently underway in our laboratory.
24. Pereira, A. R.; Etzbach, L.; Engene, N.; Müller, R.; Gerwick, W. H. J. Nat. Prod.
2011, 74, 1175–1181.
Acknowledgments
This work was supported in part by a Grant-in-Aid for Young
Scientists (B) from the Ministry of Education, Culture, Sports, Sci-
ence and Technology (MEXT) of Japan.