Journal of the American Chemical Society
ARTICLE
was computed to be more stable than the complex of the
less electron-donating 3-methoxystyrene. This combina-
tion of the experimentally measured free energies of
activation for the reaction of THF-ligated palladium amide
with the different vinylarenes and the computed relative
ground-state energies of the vinylarene complexes show
that the elementary step of migratory insertion is faster
for complexes of electron-poor vinylarenes than for com-
plexesofelectron-richvinylarenes and that the difference in
free energies of activation for this step is larger than that
for the overall reaction initiated with the THF-ligated
palladium amide.
(11) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.; Ogoshi, S.
J. Am. Chem. Soc. 2008, 130, 12874.
(12) Nakao, Y.; Idei, H.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc.
2009, 131, 5070.
(13) Watson, M. P.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130,
12594.
(14) Beletskaya, I. P.; Cheprakov, A. V. Chem Rev 2000, 100, 3009.
(15) Amatore, C.; Jutand, A. Acc. Chem. Res. 2000, 33, 314.
(16) Heck, R. F. Acc. Chem. Res. 1969, 2, 10.
(17) Heck, R. F. Acc. Chem. Res. 1979, 12, 146.
(18) Hartwig, J. F. Organotransition metal chemistry: from bonding to
catalysis; University Science Books: Sausalito, Calif., 2010.
(19) Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. J. Am. Chem. Soc.
1988, 110, 6738.
Thus, we have provided in this article the first detailed account
of the effect of the steric and electronic properties of the alkene
and ancillary ligand on the rate and scope of the insertion of
alkenes into palladiumꢀnitrogen bonds. These complexes are the
only metal-amido complexes that form directly observable olefin
adducts. Because of the ability to detect these amidopalladium
alkene complexes, we were able to probe the effect of
the steric and electronic properties of the amido complex and
the alkene reactant on the elementary migratory insertion step.
Future work will focus on expanding the scope of insertions of
alkenes into metalꢀheteroatom bonds and developing new
palladium-catalyzed reactions that involve insertions of alkenes
into metalꢀnitrogen bonds.
(20) Cowan, R. L.; Trogler, W. C. Organometallics 1987, 6, 2451.
(21) Villanueva, L. A.; Abboud, K. A.; Boncella, J. M. Organometallics
1992, 11, 2963.
(22) Stubbert, B. D.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 6149.
(23) Majumder, S.; Odom, A. L. Organometallics 2008, 27, 1174.
(24) Leitch, D. C.; Payne, P. R.; Dunbar, C. R.; Schafer, L. L. J. Am.
Chem. Soc. 2009, 131, 18246.
(25) Gagne, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1992,
114, 275.
(26) Gribkov, D. V.; Hultzsch, K. C. Angew. Chem., Int. Ed. 2004, 43,
5542.
(27) Neukom, J. D.;Perch, N. S.; Wolfe, J. P. J. Am. Chem. Soc. 2010, 132,
6276.
(28) Neukom, J. D.; Perch, N. S.; Wolfe, J. P. Organometallics 2011,
30, 1269.
(29) Zhao, P. J.; Krug, C.; Hartwig, J. F. J. Am. Chem. Soc. 2005,
’ ASSOCIATED CONTENT
127, 12066.
S
Supporting Information. Experimental procedures,
(30) Nakhla, J. S.; Kampf, J. W.; Wolfe, J. P. J. Am. Chem. Soc. 2006,
128, 2893.
(31) Ney, J. E.; Wolfe, J. P. J. Am. Chem. Soc. 2005, 127, 8644.
(32) Mai, D. N.; Wolfe, J. P. J. Am. Chem. Soc. 2010, 132, 12157.
(33) Neukom, J. D.; Aquino, A. S.; Wolfe, J. P. Org. Lett. 2011,
13, 2196.
(34) Schultz, D. M.; Wolfe, J. P. Org. Lett. 2011, 13, 2962.
(35) Kotov, V.; Scarborough, C. C.; Stahl, S. S. Inorg. Chem. 2007,
46, 1910.
(36) Liu, G. S.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129, 6328.
(37) Liu, G. S.; Yin, G. Y.; Wu, L. Angew. Chem., Int. Ed. 2008, 47,
4733.
(38) Liu, G. S.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 7179.
(39) Muniz, K.; Hovelmann, C. H.; Streuff, J. J. Am. Chem. Soc. 2008,
130, 763.
(40) Helaja, J.; Gottlich, R. Chem. Commun. 2002, 720.
(41) Tsutsui, H.; Narasaka, K. Chem. Lett. 1999, 45.
(42) Ye, X. A.; Liu, G. S.; Popp, B. V.; Stahl, S. S. J. Org. Chem. 2011,
76, 1031.
b
characterization of complexes, insertion products, and computa-
tional details. This material is available free of charge via the
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
We thank the Department of Energy for support, Johnson-
Matthey for the donation of Pd(OAc)2, Danielle Gray for
collection of X-ray data, Dale Pahls for his assistance with the
computations, and Prof. William D. Jones for assistance with
kinetic simulations.
(43) Hanley, P. S.; Markovic, D.; Hartwig, J. F. J. Am. Chem. Soc.
2010, 132, 6302.
’ REFERENCES
(44) Although square-planar complexes typically undergo ligand
exchange by associative processes, the direct observation of the equilib-
rium for dissociation of THF suggests that complex 2a equilibrates with
ethylene by a dissociative process.
(1) Grubbs, R. H.; Coates, G. W. Acc. Chem. Res. 1996, 29, 85.
(2) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000,
100, 1169.
(3) Gibson, V. C.; Spitzmesser, S. K. Chem. Rev. 2003, 103, 283.
(4) Mecking, S. Angew. Chem., Int. Ed. 2001, 40, 534.
(5) Thalji, R. K.; Ahrendt, K. A.; Bergman, R. G.; Ellman, J. A. J. Am.
Chem. Soc. 2001, 123, 9692.
(45) The approxiate observed rate contant was determined by
plotting the decay of the concentration of the ethylene adduct 8 vs time
and fitting the curve to an exponential decay. A good fit was observed,
but the decay of 8 is not precisely first-order due to the presence of
a small amount of dimer 4a. The order of the reaction is not an
integer value, and the observed rate constant for the decay of the
concentration of 8 changes over the course of the reaction. A more
detailed treatment of the data, including kinetic simulations, are
presented later in this section and rigorously determine the rate constant
for the insertion step.
(6) Tan, K. L.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2002,
124, 13964.
(7) Periana, R. A.; Liu, X. Y.; Bhalla, G. Chem. Commun. 2002, 3000.
(8) Oxgaard, J.; Periana, R. A.; Goddard, W. A. J. Am. Chem. Soc.
2004, 126, 11658.
(9) Lail, M.; Bell, C. M.; Conner, D.; Cundari, T. R.; Gunnoe, T. B.;
Petersen, J. L. Organometallics 2004, 23, 5007.
(10) Nakao, Y.; Hirata, Y.; Hiyama, T. J. Am. Chem. Soc. 2006,
128, 7420.
(46) Barshop, B. A.; Wrenn, R. F.; Frieden, C. Anal. Biochem. 1983,
130, 134.
15672
dx.doi.org/10.1021/ja205722f |J. Am. Chem. Soc. 2011, 133, 15661–15673