Circular dichroism (CD) spectroscopy was employed to
study the conformational structure of 1–8 in both aqueous
buffer and in lipid vesicles that mimic bacterial membranes
(Fig. S4, ESIw).13 a-AApeptides have a different backbone
compared to peptides; therefore CD cannot specifically elucidate
a specific secondary structure. However, results suggest that
a-AApeptides are probably unstructured in buffer solution,
since their CD spectra are quite similar to monomer 1, which is
unlikely to have any secondary structure at all (Fig. S4a, ESIw).
Magainin 7 is also randomly coiled in buffer, while peptide 8
displays a very weak minimum at 222 nm (Fig. S4a, ESIw),
indicating the presence of some a-helical character. Upon
binding to lipid vesicles, the CD of a-AApeptide 6 shows a
minimum at 207 nm (Fig. S4b, ESIw), which is not observed in
PBS. The reason is unclear, possibly because the amphipathic
structure of a-AApeptide 6 is more defined on the lipid
vesicles. Magainin 7 becomes highly helical (Fig. S4b, ESIw)
under similar conditions, which is consistent with previous
reports.24 Interestingly, 8 completely lost its helical conformation
when exposed to lipid vesicles, and turned into a random coil.
We believe a-AApeptides are not structured in aqueous
solution due to their flexible backbone. However, upon binding
to negatively charged bacterial membranes, they can easily adopt
globally amphipathic structures to facilitate membrane disruption
(Fig. S5, ESIw). Indeed, the flexibility of the AApeptide backbone
leads to a stronger bacterial membrane-disruptive capability
than conventional peptides,16 which accounts for the potent
antimicrobial activity of a-AApeptides. Control peptide 8,
containing alternative cationic and hydrophobic residues,
displays positive charges all over the helical backbone in water
solution. Forming an amphipathic structure for bacterial cell
wall penetration is not favorable because regular peptide
backbones have limited conformational freedoms, which lead
to very weak antimicrobial activity. The same assumption can
be used to explain the antibacterial activity of a-AApeptide 9.
The antimicrobial mechanism of a-AApeptides in disrupting
bacterial membranes was further assessed by fluorescence
microscopy (Fig. S6, ESIw) using a double staining method
with DAPI and PI. DAPI stains all bacterial cells irrespective
of their viability, whereas PI only stains injured or dead cells with
damaged membranes.29,30 After incubation with a-AApeptide
6 for 2 h, strongly PI-stained red fluorescent E. coli and B.
subtilis were observed, demonstrating that the membranes of
those bacteria had been disrupted.
than to pre-defined secondary structures. The number (not just
the ratio) and nature of cationic and hydrophobic groups also
have profound impact on activity. The simple design and easy
modular programmability should facilitate quick identification
of more potent and selective antimicrobial a-AApeptides in
the near future.
Notes and references
1 A. K. Marr, W. J. Gooderham and R. E. Hancock, Curr. Opin.
Pharmacol., 2006, 6, 468.
2 R. E. Hancock and H. G. Sahl, Nat. Biotechnol., 2006, 24, 1551.
3 A. Giuliani, G. Pirri, A. Bozzi, A. Di Giulio, M. Aschi and
A. C. Rinaldi, Cell. Mol. Life Sci., 2008, 65, 2450.
4 M. Zaiou, J. Mol. Med., 2007, 85, 317.
5 Y. Sang and F. Blecha, Anim. Health Res. Rev., 2008, 9, 227.
6 B. M. Peters, M. E. Shirtliff and M. A. Jabra-Rizk, PLoS Pathog.,
2010, 6, e1001067.
7 A. J. Karlsson, W. C. Pomerantz, K. J. Neilsen, S. H. Gellman and
S. P. Palecek, ACS Chem. Biol., 2009, 4, 567.
8 R. F. Epand, T. L. Raguse, S. H. Gellman and R. M. Epand,
Biochemistry, 2004, 43, 9527.
9 E. A. Porter, B. Weisblum and S. H. Gellman, J. Am. Chem. Soc.,
2002, 124, 7324.
10 E. A. Porter, X. Wang, H. S. Lee, B. Weisblum and S. H. Gellman,
Nature, 2000, 404, 565.
11 D. Liu and W. F. DeGrado, J. Am. Chem. Soc., 2001, 123, 7553.
12 N. P. Chongsiriwatana, J. A. Patch, A. M. Czyzewski,
M. T. Dohm, A. Ivankin, D. Gidalevitz, R. N. Zuckermann and
A. E. Barron, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 2794.
13 J. A. Patch and A. E. Barron, J. Am. Chem. Soc., 2003, 125, 12092.
14 N. P. Chongsiriwatana, T. M. Miller, M. Wetzler, S. Vakulenko,
A. J. Karlsson, S. P. Palacek, S. Mobashery and A. E. Barron,
Antimicrob. Agents Chemother., 2011, 55, 417–420.
15 J. B. Bremner, P. A. Keller, S. G. Pyne, T. P. Boyle, Z. Brkic,
D. M. David, A. Garas, J. Morgan, M. Robertson, K. Somphol,
M. H. Miller, A. S. Howe, P. Ambrose, S. Bhavnani, T. R. Fritsche,
D. J. Biedenbach, R. N. Jones, R. W. Buckheit Jr, K. M. Watson,
D. Baylis, J. A. Coates, J. Deadman, D. Jeevarajah, A. McCracken
and D. I. Rhodes, Angew. Chem., Int. Ed., 2011, 49, 537.
16 A.Ivankin,L.Livne,A.Mor,G.A.Caputo,W.F.Degrado,M.Meron,
B. Lin and D. Gidalevitz, Angew. Chem., Int. Ed., 2010, 49, 8462.
17 R. W. Scott, W. F. DeGrado and G. N. Tew, Curr. Opin.
Biotechnol., 2008, 19, 620.
18 P. Claudon, A. Violette, K. Lamour, M. Decossas, S. Fournel,
B. Heurtault, J. Godet, Y. Mely, B. Jamart-Gregoire,
M. C. Averlant-Petit, J. P. Briand, G. Duportail, H. Monteil and
G. Guichard, Angew. Chem., Int. Ed., 2010, 49, 333–336.
19 T. J. Falla and R. E. Hancock, Antimicrob. Agents Chemother.,
1997, 41, 771.
20 B. P. Mowery, A. H. Lindner, B. Weisblum, S. S. Stahl and
S. H. Gellman, J. Am. Chem. Soc., 2009, 131, 9735.
21 B. P. Mowery, S. E. Lee, D. A. Kissounko, R. F. Epand,
R. M. Epand, B. Weisblum, S. S. Stahl and S. H. Gellman,
J. Am. Chem. Soc., 2007, 129, 15474.
In conclusion, this is the first report of water-soluble a-
AApeptides as antimicrobial peptidomimetics. Three a-AA-
peptides (4, 5 and 6) exhibit high selectivity, broad-spectrum,
and potent antibacterial activity against fungus, Gram-
positive and Gram-negative bacteria, including clinically-relevant
multi-drug resistant strains. a-AApeptide 6 was of significant
interest as it displayed antimicrobial activities, activity that was
equal to or better than the most antimicrobial oligomeric
peptidomimetics,10,12,14,18 yet displays no hemolytic activity at
all, under tested experimental conditions. Such high selectivity is
attributed to the intrinsic properties of the flexible a-AApeptide
backbone in adopting amphipathic structures. Our results
support recent findings that antimicrobial activity of peptides,
or peptide mimics, is related to the presence of global amphi-
pathicity upon interaction with bacterial membranes rather
22 V. Menchise, G. De Simone, T. Tedeschi, R. Corradini, S. Sforza,
R. Marchelli, D. Capasso, M. Saviano and C. Pedone, Proc. Natl.
Acad. Sci. U. S. A., 2003, 100, 12021.
23 Y. Hu, X. Li, S. M. Sebti, J. Chen and J. Cai, Bioorg. Med. Chem.
Lett., 2011, 21, 1469.
24 H. C. Chen, J. H. Brown, J. L. Morell and C. M. Huang, FEBS
Lett., 1988, 236, 462.
25 I. Ahmad, W. R. Perkins, D. M. Lupan, M. E. Selsted and
A. S. Janoff, Biochim. Biophys. Acta, 1995, 1237, 109.
26 S. Ando, K. Mitsuyasu, Y. Soeda, M. Hidaka, Y. Ito, K. Matsubara,
M. Shindo, Y. Uchida and H. Aoyagi, J. Pept. Sci., 2010, 16, 171.
27 Y. H. Nan, J. K. Bang and S. Y. Shin, Peptides, 2009, 30, 832.
28 D. Takahashi, S. K. Shukla, O. Prakash and G. Zhang, Biochimie,
2010, 92, 1236–1241.
29 T. Matsunaga, M. Okochi and S. Nakasono, Anal. Chem., 1995,
67, 4487.
30 C. Chen, F. Pan, S. Zhang, J. Hu, M. Cao, J. Wang, H. Xu,
X. Zhao and J. R. Lu, Biomacromolecules, 2010, 11, 402–411.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 9729–9731 9731