1
Recently, as part of these studies, we reported the total
synthesis of aigialomycin D (3) (Figure 1). Our approach
featured a key Pd(0)-catalyzed deallylation and decarbo-
xylation of allyl ester 5, employing morpholine as a
nucleophilic palladium π-allyl cation scavenger,10 to pro-
vide the ketene precursor 6. Subsequent aromatization
of diketo-dioxinone 6 gave resorcylate 8 as a single regio-
isomer (Scheme 1).11
NOE analysis in the H NMR spectrum.13 Herein we
report for the first time this transformation and further
studies on the total synthesis of resorcylates via diketo-
dioxinones and the application of decarboxylative rear-
rangement of prenyl esters in the total syntheses of angeli-
coins B (2) and A (1).
Scheme 2. Decarboxylation-Allylation
Scheme 1. Synthesis of Aigialomycin D (3)
Application of our dioxinone methodology to the total
synthesis of angelicoin B (2) is shown in Scheme 3.
Acylation of ketoester 129 with acyl chloride 13 provided
diketoester-dioxinone 14. One pot palladium(0)-cata-
lyzed deallyation-decarboxylation-ketene trapping-aro-
matization gave the desired resorcylate 15 in 45% yield
over 3 steps. Deprotection of the silyl ether 15 followed
by acid catalyzed cyclization gave lactone 16 in 60% yield
over 2 steps. Finally, regioselective methylation of phe-
nol 16 provided angelicoin B (2), which had identical
physical and spectroscopic data with those previously
reported.2
Acylation of dioxinone 4 with acyl benzotriazole 17 gave
ketoester 18 in 93% yield.9,14 Subsequent Claisen conden-
sation reaction of ketoester 18 with acid chloride 19,9 in the
presence of magnesium chloride and pyridine, gave dike-
toester 20 in 81% yield. Decarboxylation of diketoester 20
in the presence of Pd(PPh3)4 (10 mol %) gave a separable
mixture of dioxinone 21 and resorcylate 23 in a combined
yield of 60% (Scheme 4). In these transformations, the
linear substituted diketo-dioxinone 22 underwent aroma-
tization faster than its branched isomer 21. Deprotection
of the silyl ether 23 followed by lactonization under basic
conditions provided angelicoin A (1) in an overall yield of
27% over 5 linear steps from dioxinone 4.
During these studies, we observed that reaction of allyl
ester 5 with Pd(PPh3)4 in the absence of morpholine in
CH2CI2 underwent a modified Carroll rearrangement12
affording diketo-dioxinone 9 (Scheme 2). Subsequent ke-
tene trapping with alcohol 7 gave triketoester 10. Aldol
cyclization using cesium acetate followed by acid-mediated
aromatization11 provided resorcylate 11 in 42% yield over
3 steps. The regiochemistry of arene 11 was confirmed by
(6) (a) Boeckman, R. K., Jr.; Pruitt, J. R. J. Am. Chem. Soc. 1989,
111, 8286. (b) Boeckman, R. K., Jr.; Barta, T. E.; Nelson, S. G.
Tetrahderon Lett. 1991, 32, 4091. (c) Boeckman, R. K., Jr.; Weidner,
C. H.; Perni, R. B.; Napier, J. J. J. Am. Chem. Soc. 1989, 111, 8036.
(d) Boeckman, R. K., Jr.; Shao, P.; Wrobleski, S. T.; Boehmler, D. J.;
Heintzelman, G. R.; Barbosa, A. J. J. Am. Chem. Soc. 2006, 128, 10572.
(e) Boeckman, R. K., Jr.; Goldstein, S. W. Total Synth. Nat. Prod. 1988,
7, 1. (f) Boeckman, R. K., Jr.; Perni, R. B. J. Org. Chem. 1986, 51, 5486.
(g) Boeckman, R. K., Jr.; Starrett, J. E., Jr.; Nickell, D. G.; Sum, P. E.
J. Am. Chem. Soc. 1986, 108, 5549. For application of intramolecular
capture of acyl-ketenes in natural product synthesis, see the review by:
(h) Reber, K. P.; Tilley, S. D.; Sorensen, E. J. Chem. Soc. Rev. 2009, 38,
3022.
(7) (a) Basset, J.-F.; Leslier, C.; Hamprecht, D.; White, A. J. P.;
Barrett, A. G. M. Tetrahedron Lett. 2010, 51, 783. (b) Miyatake-
Ondozabal, H.; Barrett, A. G. M. Org. Lett. 2010, 12, 5573.
(c) Mikatake-Ondozobal, H.; Barrett, A. G. M. Tetrahedron 2010, 66, 6331.
(8) The diketo-dioxinones and triketo-compounds exist as ketoÀenol
mixtures. For simplicity, all are drawn in the all keto-form.
(9) Navarro, I.; Basset, J. -F.; Hebbe, S.; Major, S. M.; Werner, T.;
Howsham, C.; Brackow, C. J.; Barrett, A. G. M. J. Am. Chem. Soc. 2008,
130, 10293.
ꢀ
(10) Aubry, N.; Plante, R.; Deziel, R. Tetrahderon Lett. 1990, 31,
6311.
(11) Calo, F.; Richardson, J.; Barrett, A. G. M. Org. Lett. 2009, 11,
4910.
(12) (a) Carroll, M. F. J. Chem. Soc. 1940, 704. (b) Shimizu, L.;
Yamada, T.; Tsuji, J. Tetrahderon Lett. 1980, 21, 3199. (c) Tsuda, T.;
Chujo, Y.; Nishi, S; Tawara, K.; Saegusa, T. J. Am. Chem. Soc. 1980,
102, 6381.
(13) Calo, F. PhD Thesis, Imperial College London, 2010.
(14) Katritzky, A. R.; Wang, Z.; Wang, M.; Hall, C. D.; Suzuki, K.
J. Org. Chem. 2005, 70, 4854.
(15) For X-ray crystal structures, see Supporting Information. Me-
chanistic studies are currently being carried out and will be reported in
due course.
Org. Lett., Vol. 13, No. 21, 2011
5749