6.58–6.48 (m, 2H), 4.25 (t, J = 6.1 Hz, 1H), 4.05 (bs, 1H), 3.37–
3.19 (m, 2H), 2.30–2.07 (m, 2H); 13C-NMR (CDCl3): d = 145.7,
143.3, 133.4, 132.7, 132.2, 131.6, 128.1, 127.7, 127.6, 127.4, 126.6,
126.0, 125.5, 121.7, 117.1, 113.7, 42.5, 39.0, 30.5; MS (FD): m/z
(%) = 293.9 (100) [M+], 296.1 (Cl2 pattern); IR (KBr): 3418, 3051,
2923, 2853, 1602, 1495, 1310, 1087, 820, 755, 743, 477 cm-1. HPLC
conditions: OD-H column, n-hexane/2-propanol = 90/10, flow
rate = 0.6 mL min-1, major enantiomer: tR = 21.03 min; minor
enantiomer: tR = 16.54 min; [a]2D5 -89.0 (c 1.0, CHCl3).
5 Examples of organocatalytic quinoline reduction: (a) M. Rueping, T.
Theissmann and A. P. Antonchick, Synlett, 2006, 1071; (b) M. Rueping
and W. Ieawsuwan, Synlett, 2007, 247; (c) M. Rueping, A. P. Antonchick
and T. Theissmann, Angew. Chem., Int. Ed., 2006, 45, 3683; (d) M.
Rueping, M. Stoeckel, E. Sugiono and T. Theissmann, Tetrahedron,
2010, 66, 6565. For the quinoline reduction in aqueous solution, see;
(e) M. Rueping and T. Theissmann, Chem. Sci., 2010, 1, 473; (f) M.
Rueping, T. Theissmann, S. Raja and J. W. Bats, Adv. Synth. Catal.,
2008, 350, 1001; (g) Q. S. Guo, D. M. Du and J. Xu, Angew. Chem., Int.
Ed., 2008, 47, 759.
6 Examples of asymmetric metal catalyzed reduction of 2-substituted
quinolines: (a) W.-B. Wang, S.-M. Lu, P. Y. Yang, X.-W. Han and Y.-G.
Zhou, J. Am. Chem. Soc., 2003, 125, 10536; (b) S.-M. Lu, X.-W. Han
and Y.-G. Zhou, Adv. Synth. Catal., 2004, 346, 909; (c) L. Xu, K. H.
Lam, J. Li, J. Wu, Q.-H. Fan, W.-H. Lo and A. S. C. Chan, Chem.
Commun., 2005, 1390; (d) K. H. Lam, L. Xu, L. Feng, Q.-H. Fan, F. L.
Lam, W.-H. Lo and A. S. C. Chan, Adv. Synth. Catal., 2005, 347, 1755;
(e) S.-M. Lu, Y.-Q. Wang, X.-W. Han and Y.-G. Zhou, Angew. Chem.,
Int. Ed., 2006, 45, 2260; (f) M. T. Reetz and X. Li, Chem. Commun.,
2006, 2159; (g) Z.-J. Wang, G.-J. Deng, Y. Li, Y.-M. He, W.-J. Tang and
Q.-H. Fan, Org. Lett., 2007, 9, 1243; (h) W.-J. Tang, S.-F. Zhu, L.-J.
Xu, Q.-L. Zhou, Q.-H. Fan, H.-F. Zhou, K. Lam and A. S. C. Chan,
Chem. Commun., 2007, 613; (i) C. Deport, M. Buchotte, K. Abecassis,
H. Tadaoka, T. Ayad, T. Ohshima, J.-P. Genet, K. Mashima and V.
Ratovelomanana-Vidal, Synlett, 2007, 2743; (j) N. Mrsic, L. Lefort, B.
Laurent, A. F. Jeroen, A. J. Minnaard, B. L. Feringa and J. G. de Vries,
Adv. Synth. Catal., 2008, 350, 1081; (k) Z. W. Li, T. L. Wang, Y. M. He,
Z. J. Wang, Q. H. Fan, J. Pan and L. J. Xu, Org. Lett., 2008, 10, 5265;
(l) H. Zhou, Z. Li, Z. Wang, T. Wang, L. Xu, Y. He, Q.-H. Fan, J. Pan, L.
Gu and A. S. C. Chan, Angew. Chem., Int. Ed., 2008, 47, 8464; (m) S.-M.
Lu and C. Bolm, Adv. Synth. Catal., 2008, 350, 1101; (n) H. Tadaoka,
D. Cartigny, T. Nagao, T. Gosavi, T Ayad, J.-P. Genet, T. Ohshima,
V. Ratovelomanana-Vidal and K. Mashima, Chem.–Eur. J., 2009, 15,
9990; (o) M. Eggenstein, A. Thomas, J. Theuerkauf, G. Francio and
W. Leitner, Adv. Synth. Catal., 2009, 351, 725; (p) Z.-J. Wang, H.-F.
Zhou, T.-L. Wang, Y.-M. He and Q.-H. Fan, Green Chem., 2009, 11,
767; (q) M. Rueping and R. M. Koenigs, Chem. Commun., 2011, 47,
304. For an overview see: Y.-G. Zhou, Acc. Chem. Res., 2007, 40, 1357.
7 Asymmetric organocatalytic reduction of other nitrogen-containing
cyclic systems: (a) M. Rueping, A. P. Antonchick and T. Theissmann,
Angew. Chem., Int. Ed., 2006, 45, 6751; (b) M. Rueping and A. P.
Antonchick, Angew. Chem., Int. Ed., 2007, 46, 4562; (c) M. Rueping, F.
Tato and F. R. Schoepke, Chem.–Eur. J., 2010, 16, 2688; (d) M. Rueping,
C. Brinkmann, A. P. Antonchick and I. Atodiresei, Org. Lett., 2010,
12, 4604; (e) M. Rueping, E. Merino and R. M. Koenigs, Adv. Synth.
Catal., 2010, 352, 2629; (f) Z.-Y. Han, H. Xiao and L.-Z. Gong, Bioorg.
Med. Chem. Lett., 2009, 19, 3729; (g) C. Metallinos, F. B. Barrett and
S. Xu, Synlett, 2008, 720. For a metal/Brønsted acid catalytic system
used in the enantioselective hydrogenation of quinoxalines, see: Q.-A.
Chen, D.-S. Wang, Y.-G. Zhou, Y. Duan, H.-J. Fan, Y. Yang and Z.
Zhang, J. Am. Chem. Soc., 2011, 133, 6126.
(4R)-4-Biphenyl-4-yl-7-chloro-1,2,3,4-tetrahydro-quinoline (6j,
Table 3, entry 17). Eluted from silica gel using toluene as eluent.
1H-NMR (CDCl3): d = 7.62–7.50 (m, 4H), 7.44 (t, J = 7.3 Hz,
2H), 7.34 (t, J = 7.2 Hz, 1H), 7.19 (d, J = 8.2 Hz, 2H), 6.71 (d,
J = 8.4 Hz, 1H), 6.55–6.50 (m, 2H), 4.14 (t, J = 5.9 Hz, 1H), 4.03
(bs, 1H), 3.38–3.18 (m, 2H), 2.29–2.14 (m, 1H), 2.13–2.00 (m, 1H);
13C-NMR (CDCl3): d = 145.9, 145.1, 140.9, 139.3, 132.7, 131.5,
128.9, 128.7, 127.1, 127.1, 127.0, 121.5, 116.8, 113.5, 42.0, 38.9,
30.6; MS (FD): m/z (%) = 320.0 (100) [M+], 322.0 (Cl2 pattern);
IR (KBr): 3419, 2954, 2925, 2867, 1604, 1496, 1308, 1088 cm-1.
HPLC conditions: OD-H column, n-hexane/2-propanol = 90/10,
flow rate = 0.6 mL min-1, major enantiomer: tR = 24.90 min; minor
enantiomer: tR = 17.84 min; [a]2D5 -64.0 (c 0.8, CHCl3).
Acknowledgements
Financial support by the DFG (SPP 1179) is gratefully acknowl-
edged.
Notes and references
1 General reviews on Brønsted acid catalysis (a) P. R. Schreiner, Chem.
Soc. Rev., 2003, 32, 289; (b) C. Bolm, T. Rantanen, I. Schiffers and L.
Zani, Angew. Chem., Int. Ed., 2005, 44, 1758; (c) T. Akiyama, J. Itoh and
K. Fuchibe, Adv. Synth. Catal., 2006, 348, 999; (d) T. Akiyama, Chem.
Rev., 2007, 107, 5744; (e) A. G. Doyle and E. N. Jacobsen, Chem. Rev.,
2007, 107, 5713; (f) D. Kampen, C. M. Reisinger and B. List, Top. Curr.
Chem., 2010, 291, 395; (g) H. Yamamoto and N. Payette, inHydrogen
Bonding in Organic Synthesis, Ed. P. M. Pihko, Wiley-VCH, Weinheim,
2009, pp. 73–140.
2 Reviews on metal-free transfer hydrogenation: (a) S. G. Ouellet, A. M.
Walji and D. W. C. MacMillan, Acc. Chem. Res., 2007, 40, 1327; (b) S.
L. You, Chem.–Asian J., 2007, 2, 820; (c) S. J. Connon, Org. Biomol.
Chem., 2007, 5, 3407; (d) C. Wang, X. F. Wu and J. L. Xiao, Chem.–
Asian J., 2008, 3, 1750; (e) M. Rueping, E. Sugiono and F. R. Schoepke,
Synlett, 2010, 852; (f) M. Rueping, J. Dufour and F. R. Schoepke, Green
Chem., 2011, 13, 1084.
8 For overviews on metal catalyzed reduction of carbon-nitrogen double
bonds, see: (a) T. L. Church and P. G. Andersson, in Chiral Amine
Synthesis: Methods, Developments and Applications, Ed., T. C. Nugent,
Wiley-VCH, Weinheim, 2010, pp. 179–223; (b) D.-W. Wang, Y.-G.
Zhou, Q.-A. Chen and D.-S. Wang, in Chiral Amine Synthesis:
Methods, Developments and Applications, Ed., T. C. Nugent, Wiley-
VCH, Weinheim, 2010, pp. 299–339.
9 Applications in the synthesis of natural products and pharmaceuticals:
(a) E. Marque´-Lo´ez, R. P. Herrera and M. Christmann, Nat. Prod.
Rep., 2010, 27, 1138; (b) R. M. de Figueiredo and M. Christmann, Eur.
J. Org. Chem., 2007, 2575; (c) M. J. Gaunt, C. C. C. Johansson, A.
McNally and N. T. Vo, Drug Discovery Today, 2007, 12, 8.
3 T. C. Nugent, Chiral Amine Synthesis: Methods, Developments and
Applications, Wiley-VCH, Weinheim, 2010.
4 For selected examples, see: (a) M. Rueping, C. Azap, E. Sugiono and
T. Theissmann, Synlett, 2005, 2367; (b) M. Rueping, E. Sugiono, C.
Azap, T. Theissmann and T. M. Bolte, Org. Lett., 2005, 7, 3781; (c) S.
Hoffmann, A. M. Seayad and B. List;, Angew. Chem., Int. Ed., 2005,
44, 7424; (d) S. Hoffmann, M. Nicoletti and B. List, J. Am. Chem.
Soc., 2006, 128, 13074; (e) R. I. Storer, D. E. Carrera, Y. Ni and D.
W. C. MacMillan, J. Am. Chem. Soc., 2006, 128, 84; (f) C. Zhu and T.
Akiyama, Org. Lett., 2009, 11, 4180; (g) Q. Kang, Z. A. Zhao and S.
L. You, Adv. Synth. Catal., 2007, 349, 1657; (h) G. L. Li, Y. X. Liang
and J. C. Antilla, J. Am. Chem. Soc., 2007, 129, 5830; (i) Q. Kang, Z.
A. Zhao and S. L. You, Org. Lett., 2008, 10, 2031; (j) L. Simon and J.
M. Goodman, J. Am. Chem. Soc., 2008, 130, 8741; (k) T. Marcelli, P.
Hammar and F. Himo, Chem.–Eur. J., 2008, 14, 8562; (l) G. L. Li and J.
C. Antilla, Org. Lett., 2009, 11, 1075; (m) T B. Nguyen, H. Bousserouel,
Q. Wang and F. Gue´itte, Org. Lett., 2010, 12, 4705; (n) C. Zhu and T.
Akiyama, Org. Lett., 2009, 11, 4180; (o) C. Zhu and T. Akiyama, Adv.
Synth. Catal., 2010, 352, 1846; (p) T. B. Nguyen, H. Bousserouel, Q.
Wang and F. Gue´itte, Adv. Synth. Catal., 2011, 353, 257.
10 For the complete reduction of auxiliary-substituted quinolines to 4-
substituted decahydroquinolines, see: M. Heitbaum, R. Fro¨lich and F.
Glorius, Adv. Synth. Catal., 2010, 352, 357.
11 N. S. Mani and M. Wu, Tetrahedron: Asymmetry, 2000, 11, 4687.
12 Reviews on BINOL-derived acids: (a) M. Terada, Chem. Commun.,
2008, 4097; (b) M. Terada, Synthesis, 2010, 1929; (c) M. Terada,
Bull. Chem. Soc. Jpn., 2010, 83, 101; (d) A. Zamfir, S. Schenker, M.
Freund and S. B. Tsogoeva, Org. Biomol. Chem., 2010, 8, 5262; (e) M.
Rueping, A. Kuenkel and I. Atodiresei, Chem. Soc. Rev., 2011, 40,
DOI: 10.1039/C1CS15087A; (f) M. Rueping, B. J. Nachtsheim, W.
Ieawsuwan and I. Atodiresei, Angew. Chem. Int. Ed., 2011, 50, 6706–
6720.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 6844–6850 | 6849
©