C. Hou et al. / Tetrahedron Letters 52 (2011) 4903–4905
4905
Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Pb2+, and Mg2+. With the addition of
mixture solution, 1 shows significant quenching in all of the sam-
ples that suggests the strong interaction between 1 and Hg2+
(Fig. S2 in Supplementary data). Moreover, several anions, includ-
7. Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Springer: New York, 2007.
8. (a) Yoon, J.; Ohler, N. E.; Vance, D. H.; Aumiller, W. A.; Czarnik, A. W.
Tetrahedron Lett. 1997, 38, 3845; (b) Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc.
2003, 125, 14270; (c) Guo, X.; Qian, X.; Jia, L. J. Am. Chem. Soc. 2004, 126, 2272;
(d) Liu, B.; Tian, H. Chem. Commun. 2005, 3156; (e) Sung, K.; Fu, H.; Hong, S. J.
Fluoresc. 2007, 17, 383; (f) Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2007, 129,
5910; (g) Zhang, X.; Xiao, Y.; Qian, X. Angew. Chem., Int. Ed. 2008, 47, 8025; (h)
Shunmugam, R.; Gabriel, G. J.; Smith, C. E.; Aamer, K. A.; Tew, G. N. Chem. Eur. J.
2008, 14, 3904; (i) Wanichacheva, N.; Siriprumpoonthum, M.; Kamkaew, A.;
Grudpan, K. Tetrahedron Lett. 2009, 50, 1783; (j) Liu, Y.; Yu, M.; Chen, Y.; Zhang,
N. Bioorg. Med. Chem. 2009, 17, 3887; (k) Wan, Y.; Niu, W.; Behof, W. J.; Wang,
Y.; Boyle, P.; Gorman, C. B. Tetrahedron 2009, 65, 4293; (l) Huang, J.; Xu, Y.;
Qian, X. J. Org. Chem. 2009, 74, 2167; (m) Lee, H.; Lee, S. S. Org. Lett. 2009, 11,
1393; (n) Cho, Y.; Lee, S. S.; jung, J. H. Analyst 2010, 135, 1551; (o) Yang, Y.; Gou,
X.; Blecha, J.; Cao, H. Tetrahedron Lett. 2010, 3422; (p) Zhou, Y.; Zhu, C.; Gao, X.;
You, X.; Yao, C. Org. Lett. 2010, 12, 2566; (q) Mitra, A.; Mittal, A.; Rao, C. Chem.
Commun. 2011, 47, 2565; (r) Yang, X.; Ge, J.; Xu, Q.; Zhu, X.; Li, N.; Gu, H.; Lu, J.
Tetrahedron Lett. 2011, 52, 2492; (s) Chen, C.; Wang, R.; Guo, L.; Fu, N.; Dong, H.;
Yuan, Y. Org. Lett. 2011, 13, 1162.
2À
3À
ing ClÀ, NO3À, ClO4À, AcOÀ, SO42À, CO3 and PO4 (obtained by
using their sodium salt; 4.0 Â 10À5 M), also are used to examine
possible interference in the binding interaction between 1 and
Hg2+. No fluorescence quenching triggered by these anions is ob-
served (Fig. S3 in Supplementary data), indicating that 1 represents
a robust sensor for high-throughput measurements against Hg2+
.
In conclusion, we have successfully devised a naphthalimide-
aza-15-crown-5 conjugate that behaved as a selective fluorescent
Hg2+ sensor by a simple two-step synthesis. Sensor 1 displays sig-
nificant turn-off and blue-shift responses of fluorescence following
Hg2+ recognition. Although 1 requires MeOH as co-solvent to
increase solubility in aqueous media, this sensor still offers a facile
analysis method for Hg2+ detection and also may contribute to the
development of more efficient chemosensors based on the 1,8-
naphthalimide platform.
9. Nolan, E. M.; Lippard, S. J. Chem. Rev. 2008, 108, 3443.
10. Demchenko, A. P. Introduction to Fluorescence Sensing; Springer: New York,
2009.
11. (a) Demeter, A.; Bérces, T.; Biczók, L. J. Phys. Chem. 1996, 100, 2001; (b) Cao, H.;
Chang, V.; Hernandez, R.; Heagy, M. D. J. Org .Chem. 2005, 70, 4929; (c) David,
E.; Luigi, F.; Maurizio, L. J. Org. Chem. 2005, 70, 5717.
12. (a) Cao, H.; Diaz, D. I.; DiCesare, N.; Lakowicz, J. R.; Heagy, M. D. Org. Lett. 2002,
1503; (b) Parkesh, R.; Lee, T. C.; Gunnlaugsson, T. Tetrahedron Lett. 2009, 4114;
(c) Nandhikonda, P.; Begaye, M. P.; Heagy, M. D. Tetrahedron Lett. 2009, 50,
2459; (d) Zhang, J.; Lim, C. S.; Bhunlya, S.; Cho, B. R.; Kim, J. S. Org. Lett. 2011,
13, 1190; (e) Cui, L.; Zhong, Y.; Zhu, W.; Xu, Y.; Du, Q.; Wang, X.; Qian, X.; Xiao,
Y. Org. Lett. 2011, 13, 928.
Acknowledgments
This research is supported by Mini-Grant, URF, and URCA in the
University of Nebraska at Kearney.
13. (a) Grabtchev, I.; Philipova, T.; Méallier, P.; Guittonneau, S. Dyes Pigments 1996,
31, 31; (b) Paudel, S.; Nandhikonda, P.; Heagy, M. D. J. Fluoresc. 2009, 19, 681.
14. (a) Li, C.; Wong, W. Chem. Commun. 2002, 18, 2034; (b) Li, Y. Q.; Bricks, J. L.;
Resch-Genger, U.; Spieles, M.; Rettig, W. J. Fluoresc. 2006, 16, 337; (c) Li, C.; Li,
Y.; Law, G.; Man, K.; Wong, W.; Lei, H. Bioconjugate Chem. 2006, 17, 571; (d)
Kondo, S.; Takahashi, T.; Takiguchi, Y.; Unno, M. Tetrahedron Lett. 2011, 52, 453.
15. A mixture of 4-bromo-1,8-naphthalic anhydride (0.277 g, 1.0 mmol) and 4-
methoxyaniline (0.123 g, 1.0 mmol) in 10 mL pyridine was refluxed for 3 h
under argon atmosphere. The reaction mixture was poured into 40 mL 1.0 M
cold HCl solution to collect precipitate. The crude product was purified by
column chromatography (silica, 220–400 mesh, dichloromethane/EtOAc = 3:1
v/v). The product was isolated as a brown powder 2 (0.35 g, 91%). 1H NMR
(300 MHz, DMSO-d6) d: 3.82 (s, 3H), 7.06 (d, J = 8.9 Hz, 2H), 7.29 (d, J = 9.8 Hz,
2H), 8.05(t, J = 7.4 Hz, 1H), 8.26 (d, J = 7.5 Hz, 1H), 8.35 (d, J = 8.9 Hz, 1H), 8.60
(d, J = 6.1 Hz, 2H); 13C NMR (75 MHz, DMSO-d6) d: 55.8, 114.6, 123.2, 124.0,
128.7, 129.4, 129.7, 130.6, 131.4, 131.9, 132.1, 133.1, 159.4, 163.8. MS: m/z
(MH)+ 381.23. Anal. Calcd for C19H12BrNO3: C, 59.71; H, 3.16; N, 3.66. Found: C,
59.34; H, 3.28; N, 3.49.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Sigel, A.; Sigel, H. Mercury and Its Effects on Environment and Biology; Marcel
Dekker, 1997; (b) Nendza, M.; Herbst, T.; Kussatz, C.; Gies, A. Chemosphere
1997, 35, 1875–1885; (c) Boening, D. W. Chemosphere 2000, 40, 1335.
2. (a) Bolger, P. M.; Schwetz, B. A. N. Eng. J. Med. 2002, 347, 1735; (b) Counter, S. A.;
Buchanan, L. H. Toxicol. Appl. Pharmacol. 2004, 198, 209.
3. Mason, R. P.; Fitzgerald, W. F.; Hurley, J.; Hanson, A. K.; Donaghay, P. L.;
Sieburth, J. M. Limnol. Oceanogr. 1993, 38, 1227.
4. Garriga, P.; Quintana, D. G.; Manyosa, J. J. FEBS Lett. 1995, 358, 27.
5. (a) Forman, J.; Moline, J.; Cernichiari, E.; Sayegh, S.; Torres, J. C.; Landrigan, M.
M.; Hudson, J.; Adel, H. N.; Landrigan, P. J. Environ. Health Perspect. 2000, 108,
575; (b) Silbergeld, E. K.; Silva, I. A.; Nyland, J. F. Toxicol. Appl. Pharmacol. 2005,
207, S282.
6. (a) Yerian, T. D.; Christian, G. D.; Ruzicka, J. Anal. Chim. Acta 1988, 204, 7; (b)
Wang, J.; Tian, B.; Lu, J.; Wang, J.; Luo, D. Electroanalysis 1998, 10, 399; (c)
Tauriainen, S.; Virta, M.; Chang, W.; Karp, M. Anal. Biochem. 1999, 272, 191; (d)
Hassan, S. S. M.; Saleh, M. B.; Abdel, G.; Ahmed, A.; Mekheimer, R. A. H.; Abdel
Kream, N. A. Talanta 2000, 53, 285; (e) Xu, X.; Thundat, T. G.; Brown, G. M.; Ji, H.
Anal. Chem. 2002, 74, 3611; (f) Zhao, Y.; Zhong, Z. J. Am. Chem. Soc. 2006, 128,
9988; (g) Lee, M. H.; Lee, S. J.; Jung, J. H.; Lim, H.; Kim, J. S. Tetrahedron 2007, 63,
12087; (h) Yu, C.; Tseng, W. Langmuir 2008, 24, 12717; (i) Keller, L. O.; Kallis, K.
T.; Fiedler, H. L. J. Nanosci. Nanotechnol. 2010, 10, 5921; (j) Adhikari, B.;
Banerjee, A. Chem. Mater. 2010, 22, 4364.
16. Compound 2 (0.191 g, 0.5 mmol) and 1-aza-15-crown-5 (0.153 g, 0.7 mmol) in
5 mL pyridine were refluxed for 15 h under argon atmosphere. Then pyridine
was removed by rotary evaporation to afford crude product 1 that was purified
by column chromatography (silica, 220–400 mesh, MeOH/EtOAc = 1:4 v/v).
Product was collected as a bright yellow powder 1 (0.14 g, 53%). 1H NMR
(300 MHz, DMSO-d6) d: 3.75 (m, 20H), 3.90 (s, 3H), 7.07 (m, 2H), 7.25(m, 2H),
7.52 (d, J = 8.9 Hz, 1H), 7.71 (t, J = 7.4 Hz, 1H), 8.55 (d, J = 9.0 Hz, 1H), 8.62 (d,
J = 7.6 Hz, 1H), 8.75 (d, J = 9.5 Hz, 1H); 13C NMR (75 MHz, DMSO-d6) d: 54.2,
55.5, 69.4, 70.8, 71.2, 114.6, 116.1, 117.2, 123.3, 125.3, 127.1, 128.3, 129.4,
131.4, 131.5, 132.3, 155.7, 159.4, 164.3. MS: m/z (MH)+ 520.65. Anal. Calcd for
C29H32N2O7: C, 66.91; H, 6.20; N, 5.38. Found: C, 67.03; H, 6.01; N, 5.32.
17. Xu, Z.; Xiao, Y.; Qian, X.; Cui, J.; Cui, D. Org. Lett. 2005, 889–892.