3
temperature to 100 °C resulted in enhanced conversion, yet still
incomplete reaction. To achieve full conversion at 100 °C, it was
necessary to increase the catalyst loading to 10 mol%. Varying
the base did not result in significant changes to the conversion
rate, with Cs2CO3 proving the most effective.20 The yield of
dihydroquinoxaline-2(1H)-one products was reasonable in most
cases, averaging 60% (Table 2).21 Both aliphatic and aryl amines
cyclized in approximately the same amounts, showing no
negative impact from the moderately electron-withdrawing aryl
substituents.
References and notes
1.
a) Li, X.; Yang, K.; Li, W.; Xu, W. Drugs Future 2006, 31, 979.
b) Carta, A.; Piras, S.; Loriga, G.; Paglietti, G. Mini-Rev. Med.
Chem. 2006, 6, 1179. c) Ramli, Y.; Moussaif, A.; Karrouchi, K.;
Essassi, E. M. J. Chem. 2014, DOI:10.1155/563406. d) Abu-
Hashem, A. A. Am. J. Org. Chem. 2015, 5, 14.
2.
3.
Zhou, J.; Ba, M.; Wang, B.; Zhou, H.; Bie, J.; Fu, D.; Cao, Y.; Xu,
B.; Guo, Y. Med. Chem. Commun. 2014, 5, 441.
a) Su, D.-S.; Markowitz, M. K.; DiPardo, R. M.; Murphy, K. L.;
Herrell, C. M.; O'Malley, S. S.; Ransom, R. W.; Chang, R. S. L.;
Ha, S.; Hess, F. J.; Pettibone, D. J.; Mason, G. S.; Boyce, S.;
Freidinger, R. M.; Bock, M. G. J. Am. Chem. Soc. 2003, 125,
7516. b) Chen, J. J.; Qian, W.; Biswas, K.; Viswanadhan, V. K.;
Askew, B. C.; Hitchcock, S.; Hungate, R. W.; Arik, L.; Johnson,
E. Bioorg. Med. Chem. Lett. 2003, 13, 2297.
The observations are consistent with our previous study on the
synthesis of benzoxazinone species; therefore, we propose a
similar mechanism is at play (Scheme 4). From the active
Pd(P(tBu3))2 catalyst, C-Br bond activation occurs to yield
carbonyl-stabilized palladacycle 7.22 Anion exchange yields
carbonate complex 8, followed by deprotonation to yield
palladium amide complex 9. Previous reports have proposed that
the superior reactivity of carbonate bases in palladium-catalyzed
reactions arises from intramolecular deprotonation.23 The
catalytic cycle is closed through reductive elimination of the C-N
bond and regeneration of the Pd-catalyst.
4.
5.
6.
a) Nasir, W.; Munawar, M. A.; Ahmed, E.; Sharif, A.; Ahmed, S.;
Ayub, A.; Khan, M. A. K.; Nasim, F. H. Arch. Pharm. Res. 2011,
34, 1605. b) Ghadage, R. V.; Shirote, P. J. J. Chem. Pharm. Res.
2011, 3, 260. c) Bonuga, Y. R.; Nath, A. R.; Balram, B.; Ram, B.
Der Pharma Chem. 2013, 5, 296.
a) Dömling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39, 3168. b)
Ugi, I. Pure Appl. Chem. 2001, 73, 187. For use of Ugi products
in heterocyclic synthesis see Sharma, U. K.; Sharma, N.;
Vachhani, D. D.; Van der Eycken, E. V. Chem. Soc. Rev. 2015,
44, 1836.
a) Kalinski, C.; Umkehrer, M.; Ross, G.; Kolb, J.; Burdack, C.;
Hiller, W. Tetrahedron Lett. 2006, 47, 3423. b) Erb, W.; Neuville,
L.; Zhu, J. J. Org. Chem. 2009, 74, 3109.
R2
Pd(dba)2
N
R1
O
Br
P(tBu)3
O
7.
8.
For a non-Ugi reaction route, see Luo, X.; Chenard, E.; Martens,
P.; Cheng, Y.-X., Tomaszewski, M. J. Org. Lett. 2010, 12, 3574.
a) Guram, A. S.; Rennels, R. A.; Buchwald, S. L. Angew. Chem.,
Int. Ed. 1995, 34, 1348. b) Louie, J.; Hartwig, J. F. Tetrahedron
Lett. 1995, 36, 3609. c) Wolfe, J. P.; Rennels, R. A.; Buchwald,
S. L. Tetrahedron 1996, 21, 7525. d) Hartwig, J. F. Acc. Chem.
Res. 1998, 31, 858. e) Yang, B. H.; Buchwald, S. L. Org. Lett.
1999, 1, 35. f) Yang, B. H.; Buchwald, S. L. J. Organomet.
Chem. 1999, 576, 125. g) Hartwig, J. F. Nature 2008, 455, 314.
h) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2, 27.
Ylijoki, K. E. O.; Kündig, E. P. Chem. Commun. 2011, 47, 10608.
R1
2 DBA
Pd(PtBu3)2
N
N
6
NHR2
5
tBu3P
PtBu3
tBu3P
Pd
R2
N
Br
tBu3P
9.
R1
Pd
N
O
10. Würtz, S.; Lohre, C.; Fröhlich, R.; Bergander, K.; Glorius, F. J.
Am. Chem. Soc. 2009, 131, 8344.
N
R1
O
9
11. See Supplementary Material for complete experimental details.
12. Extension of this methodology to substituted benzoyl formic acid
species is readily achieved, see: Fizet, C. Helv. Chim. Acta 1982,
65, 2024 and Ref. 9.
NHR2
7
Cs2CO3
13. Jiang, X.; Qing, F.-L. Beilstein J. Org. Chem. 2013, 9, 2862.
14. Finkelstein, H. Ber. Dtsch. Chem. Ges. 1910, 43, 1528.
15. General procedure for preparation of 5: To a toluene solution (ca.
50 - 100 mM) of mesylate compound 4 (1 equiv.) and a catalytic
amount of NaI, amine (2 equiv.) was added slowly under nitrogen
atmosphere. The reaction mixture was heated at 80 ˚C for 24 h.
The reaction was then quenched with water and extracted with
EtOAc. The organic extract was washed with brine and dried over
anhydrous MgSO4. The crude product was purified by silica gel
column chromatography, eluted with DCM then 1-3% MeOH in
DCM. The fractions were concentrated and residual solvent
removed under vacuum.
OCs
HCO3Cs
O
O
tBu3P
Pd
N
O
CsBr
R1
NHR2
8
Scheme 4: Proposed catalytic cycle.
16. George, D. M.; Breinlinger, E. C.; Argiriadi, M. A.; Zhang, Y.;
Wang, J.; Bansal-Pakala, P.; Duignan, D. B.; Honore, P.; Lang, Q.
Y.; Mittelstadt, S.; Rundell, L.; Schwartz, A.; Sun, J.; Edmunds, J.
J. J. Med. Chem. 2015, 58, 333.
17. Abel-Magid, A. F.; Mehrman, S. J. Org. Proc. Res. Devel. 2006,
10, 971.
18. a) Knust, H.; Nettekoven, M.; Pinard, E.; Roche, O.; Rogers-
Evans, M. WO Patent 2009/016087 A1, 2009. b) Fuse, S.; Masui,
H.; Tannna, A.; Shimizu, F.; Takahashi, T. ACS Comb. Sci. 2012,
14, 17.
19. Netherton, M. R.; Fu, G. C. Org. Lett. 2001, 3, 4295.
20. This reduced reactivity is consistent with the work of Kalinski et
al. where 5 mol% Pd2(dba)3 and 10 mol% P(o-tol)3 at 100 °C
required 72 - 96 hours to achieve average yields of 39%.6a
21. General procedure for preparation of 6: In a Schlenk flask,
Pd(dba)2 (20 mol%), [HPtBu3]BF4 (40 mol%), and Cs2CO3 (1.2
equiv.) were dissolved in toluene (50 - 100 mM with respect to 5)
and heated at 100 °C for 15 min under nitrogen. The solution
changed from a red/purple colour to yellow. To this, 5 (1 equiv.)
was added and stirred for 16 hours. The reaction was diluted with
In summary, we have demonstrated a new NaI-catalyzed SN2
substitution for synthesis of amidoamine substrates and their
subsequent
palladium-catalyzed
cyclization
to
yield
dihydroquinoxaline-2(1H)-ones. The substitution reaction is
effective for alkylamines and has lower yield for arylamines.
The cyclization reaction does not display significant substitution
dependence, proceeding well for both alkyl and aryl substituted
substrates. The resulting products are currently being screened
for biological activity.
Acknowledgments
Financial support from the Canada Foundation for Innovation
(CFI), the Faculties of Science and Graduate Studies and
Research of Saint Mary's University, and ACEnet (ACEnet
Research Fellowship to I.I.M.) is gratefully acknowledged.