Y. Fu et al. / Journal of Molecular Structure 1004 (2011) 252–256
255
Fig. 3. (a) TG–MS curves for 1; (b) VTPXRD patterns for 1; (c) TG–MS curves for 2; (d) VTPXRD patterns for 2.
[7] J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim, Nature 404 (2000) 982.
[8] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi,
Science 295 (2002) 469.
[9] Y. Liu, G. Li, X. Li, Y. Cui, Angew. Chem. Int. Ed. 46 (2007) 6301.
[10] W. Zhang, R.G. Xiong, S.D. Huang, J. Am. Chem. Soc. 130 (2008) 10468.
[11] A.K. Cheetham, C.N.R. Rao, R.K. Feller, Chem. Commun. (2006) 4780.
[12] T.F. Liu, D. Fu, S. Gao, Y.Z. Zhang, H.L. Sun, G. Su, Y.J. Liu, J. Am. Chem. Soc. 125
(2003) 13976.
[13] Y.Z. Zheng, M.L. Tong, W. Xue, W.X. Zhang, X.M. Chen, F. Grandjean, G.J. Long,
Angew. Chem. Int. Ed. 46 (2007) 6076.
[14] M.D. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Chem. Soc. Rev. 38 (2009)
1330.
Compound 1 presents a 3D framework formed by (Zn2O8)n zigzag
chains of (Zn2O8)n and bridging BTC anions with 1D channels of
ca. 5.6 ꢂ 5.6 Å along [0 0 1] direction, while 2 constructs a 2D net-
work placed in the bc plane, consisting of Cd(1)O6 octahedra and
BTC ligands. The two illustrations demonstrate that cooperating
d10 transition metals with bridging BTC ligands may provide a use-
ful platform for novel metal–organic frameworks with priming
constructions.
[15] S. Leininger, B. Olenyuk, P.J. Stang, Chem. Rev. 100 (2000) 853.
[16] G. Novitchi, W. Wernsdorfer, L.F. Chibotaru, J.P. Costes, C.E. Anson, A.K. Powell,
Angew. Chem. Int. Ed. 48 (2009) 1614.
[17] T.C. Stamatatos, A. Vinslava, K.A. Abboud, G. Christou, Chem. Commun. (2009)
2839.
[18] C.D. Ene, A.M. Madalan, C. Maxim, B. Jurca, N. Avarvari, M. Andruh, J. Am.
Chem. Soc. 131 (2009) 4586.
[19] D.N. Dybtsev, H. Chun, K. Kim, Angew. Chem. Int. Ed. 43 (2004) 5033.
[20] B.L. Chen, C.D. Liang, J. Yang, D.S. Contreras, Y.L. Clancy, E.M. Lobkovsky, O.M.
Yaghi, S. Dai, Angew. Chem. Int. Ed. 45 (2006) 1390.
[21] H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Nature 402 (1999) 276.
[22] B. Chen, X. Zhao, A. Putkham, K. Hong, E.B. Lobkovsky, E.J. Hurtado, A.J.
Fletcher, K.M. Thomas, J. Am. Chem. Soc. 130 (2008) 6411.
[23] C. Serre, F. Millange, J. Marrot, G. Férey, Chem. Mater. 14 (2002) 2409.
[24] P.C. Liang, H.K. Liu, C.T. Yeh, C.H. Lin, V. Zima, Cryst. Growth Des. 11 (2011)
699.
[25] D.R. Xiao, E.B. Wang, H.Y. An, Z.M. Su, Y.G. Li, L. Gao, C.Y. Sun, L. Xu, Chem. Eur.
J. 11 (2005) 6673.
[26] R.A. Zehnder, R.A. Renn, E. Pippin, M. Zeller, K.A. Wheeler, J.A. Carr, N. Fontaine,
N.C. McMullen, J. Mol. Struct. 985 (2011) 109.
Acknowledgment
This work is supported the National Key Basic Research Project
of China (Grant 2010CB833103).
Appendix A. Supplementary data
CCDC 823406 and 829422 contain the supplementary crystallo-
graphic data for 1 and 2. These data can be obtained free of charge
from the Cambridge Crystallographic Data Centre via http://
ated with this article can be found, in the online version, at doi:
XXX. Supplementary data associated with this article can be found,
References
[27] S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, Science 283
(1999) 1148.
[1] O.M. Yaghi, H.L. Li, C. Davis, D. Richardson, T.L. Groy, Acc. Chem. Res. 31 (1998)
474.
[2] S.R. Batten, R. Robson, Angew. Chem. Int. Ed. 37 (1998) 1460.
[3] S.L. James, Chem. Soc. Rev. 32 (2003) 276.
[4] C.N.R. Rao, S. Natarajan, R. Vaidhyanathan, Angew. Chem. Int. Ed. 43 (2004)
1466.
[28] M. Latroche, S. Surblé, C. Serre, C. Mellot-Draznieks, P.L. Llewellyn, J.H. Lee, J.S.
Chang, S.H. Jhung, G. Férey, Angew. Chem. Int. Ed. 45 (2006) 8227.
[29] B.L. Chen, Y. Yang, F. Zapata, G.N. Lin, G.D. Qian, E.B. Lobkovsky, Adv. Mater. 19
(2007) 1693.
[30] M.A. Braverman, R.M. Supkowski, R.L. LaDuca, J. Solid State Chem. 180 (2007)
1852.
[5] S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 43 (2004) 2334.
[6] G. Férey, Chem. Soc. Rev. 37 (2008) 191.
[31] Q.R. Fang, G.S. Zhu, M. Xue, J.Y. Sun, F.X. Sun, S.L. Qiu, Inorg. Chem. 45 (2006)
3582.