example of using small molecules for targeting carbohydrate-
based cancer biomarkers in MALDI-IMS work.
16 J. A. Bauer, A. B. Chakravarthy, J. M. Rosenbluth, D. M. Mi,
E. H. Seeley, N. D. Granja-Ingram, M. G. Olivares, M. C. Kelley,
I. A. Mayer, I. M. Meszoely, J. A. Means-Powell, K. N. Johnson,
C. J. Tsai, G. D. Ayers, M. E. Sanders, R. J. Schneider,
S. C. Formenti, R. M. Caprioli and J. A. Pietenpol, Clin. Cancer
Res., 2010, 16, 681–690.
17 L. H. Cazares, D. Troyer, S. Mendrinos, R. A. Lance,
J. O. Nyalwidhe, H. A. Beydoun, M. A. Clements, R. R. Drake
and O. J. Semmes, Clin. Cancer Res., 2009, 15, 5541–5551.
18 S. Rauser, C. Marquardt, B. Balluff, S. O. Deininger, C. Albers,
E. Belau, R. Hartmer, D. Suckau, K. Specht, M. P. Ebert,
M. Schmitt, M. Aubele, H. Hofler and A. Walch, J. Proteome
Res., 2010, 9, 1854–1863.
19 G. Thiery, M. S. Shchepinov, E. M. Southern, A. Audebourg,
V. Audard, B. Terris and I. G. Gut, Rapid Commun. Mass
Spectrom., 2007, 21, 823–829.
20 G. Thiery, E. Anselmi, A. Audebourg, E. Darii, M. Abarbri,
B. Terris, J. C. Tabet and I. G. Gut, Proteomics, 2008, 8,
3725–3734.
21 R. Lemaire, J. Stauber, M. Wisztorski, C. Van Camp, A. Desmons,
M. Deschamps, G. Proess, I. Rudlof, A. S. Woods, R. Day,
M. Salzet and I. Fournier, J. Proteome Res., 2007, 6, 2057–2067.
22 W. Yang, S. Gao, X. Gao, V. R. Karnati, W. Ni, B. Wang,
W. B. Hooks, J. Carson and B. Weston, Bioorg. Med. Chem. Lett.,
2002, 12, 2175–2177.
23 W. Yang, H. Fan, S. Gao, X. Gao, W. Ni, V. Karnati,
W. B. Hooks, J. Carson, B. Weston and B. Wang, Chem. Biol.,
2004, 11, 439–448.
In conclusion, using a sLex-recognizing boronolectin, we
were able to develop a mass spectrometric probe for histological
work on cancer tissues expressing the target carbohydrate
using MALDI-IMS. Compared with protein-based targeting
molecules, small molecule boronolectins have the advantage of
excellent stability, easy storage, well-defined conjugation
chemistry, and compatibility with organic solvents in sample
preparation and tissue handling. The availability of additional
boronolectins will allow for the development of a ‘‘toolbox’’
for MALDI-IMS of cancer based on carbohydrate biomarkers.
We gratefully acknowledge the financial support of this work
by the National Institutes of Health (GM084933 (BW) and
GM086925 (BW); CA137704/CA135087 (RRD); CA085067
(OJS)) and Department of Defense W81XWH-10-1-0136 (RRD).
Notes and references
1 B. N. Nathwani, S. J. Sasu, A. N. Ahsanuddin, A. M. Hernandez
and M. R. Drachenberg, Adv. Anat. Pathol., 2007, 14, 375–400.
2 J. Teruya-Feldstein, Arch. Pathol. Lab. Med., 2010, 134, 1659–1665.
3 J. A. Ludwig and J. N. Weinstein, Nat. Rev. Cancer, 2005, 5,
845–856.
4 Lectins and Cancer, ed. H.-J. Gabius and S. Gabius, Springer-
Verlag, New York, 1991.
5 A. Danguy, I. Camby and R. Kiss, Biochim. Biophys. Acta, Gen.
Subj., 2002, 1572, 285–293.
6 Molecular Glycobiology, ed. M. Fukuda and O. Hindsgaul, Oxford
University Press, New York, 1994.
7 Chemical Glycobiology, ed. X. Chen, R. Halcomb and P. G. Wang,
American Chemical Society, Washington, DC, 2008.
8 Molecular and Cellular Glycobiology, ed. M. Fukuda and
O. Hindsgaul, Oxford University Press, 2000.
9 Y. Cheng, M. Li, S. Wang, H. Peng, S. Reid, N. Ni, H. Fang,
W. Xu and B. Wang, Sci. China Chem., 2010, 53, 3–20.
10 S. Jin, Y. F. Cheng, S. Reid, M. Li and B. Wang, Med. Res. Rev.,
2010, 30, 171–257, and references cited therein.
11 S. Mizuquchi, N. Nishiyama, T. Iwata, T. Nishida, N. Izumi,
T. Tsukioka, K. Inoue and S. Suehiro, Eur. J. Cancer Suppl., 2007,
5, 374.
12 J. Kurebayashi, T. Nomura, M. Hirono, S. Okubo, K. Udagawa,
S. Shiiki, M. Ikeda, K. Nakashima, K. Tanaka and H. Sonoo, Jpn.
J. Clin. Oncol., 2006, 36, 150–153.
13 Y. Fujii, M. Yoshida, L. J. Chien, K. Kihara, Y. Kageyama,
Y. Yasukochi and H. Oshima, Urol. Int., 2000, 64, 129–133.
14 P. Chaurand, M. Stoeckli and R. M. Caprioli, Anal. Chem., 1999,
71, 5263–5270.
24 K. R. Birikh, P. L. Bernad, V. V. Shmanai, A. D. Malakhov,
M. S. Shchepinov and V. A. Korshun, Single Nucleotide Poly-
morphisms: Methods and Protocols, in Methods in Molecular
Biology, ed. J. Walker, Humana Press, New York, 2008,
pp. 345–361.
25 K. R. Birikh, P. L. Bernad, V. V. Shmanai, A. D. Malakhov,
M. S. Shchepinov and V. A. Korshun, Methods Mol. Biol., 2009,
578, 345–361.
26 K. R. Birikh, V. A. Korshun, P. L. Bernad, A. D. Malakhov,
N. Milner, S. Khan, E. M. Southern and M. S. Shchepinov, Anal.
Chem., 2008, 80, 2342–2350.
27 M. S. Shchepinov, R. Chalk and E. M. Southern, Nucleic Acids
Symp. Ser., 1999, 107–108.
28 A. V. Ustinov, V. V. Shmanai, K. Patel, I. A. Stepanova,
I. A. Prokhorenko, I. V. Astakhova, A. D. Malakhov,
M. V. Skorobogatyi, P. L. Bernad, S. Khan, M. Shahgholi,
E. M. Southern, V. A. Korshun and M. S. Shchepinov, Org.
Biomol. Chem., 2008, 6, 4593–4608.
29 I. G. Gut, EP2163900, 2010.
30 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int.
Ed., 2001, 40, 2004–2021.
31 Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless and
M. G. Finn, J. Am. Chem. Soc., 2003, 125, 3192–3193.
32 C. W. Tornøe, C. Christensen and M. Meldal, J. Org. Chem., 2002,
67, 3057–3064.
15 K. Schwamborn and R. M. Caprioli, Nat. Rev. Cancer, 2010, 10,
639–646.
33 M. Meldal and C. W. Tornøe, Chem. Rev., 2008, 108, 2952–3015.
c
10340 Chem. Commun., 2011, 47, 10338–10340
This journal is The Royal Society of Chemistry 2011