5956
Y. Ni et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5952–5956
Table 4
Kinase selectivity profile (%inhibition at 1 lM)
Kinase
CDK2 cyclinA
Aurora A
CHK1
CHK2
SRC
EGFR
FGFR1
GSK3B
JAK3
LCK
17
28
Kinase
17
28
46.8
27.3
MK2
3.3
50.5
88.5
MARK1
23.0
1.3
À0.8
À7.8
MET
9.8
10.8
17.0
29.0
NEK2
3.3
À3.8
À1.3
PAK4
11.0
11.0
3.3
PKA
À3.3
6.8
50.5
56.5
ROCK1
17.0
26.0
43.3
29.5
CK1a1
À1.3
4.5
13.8
6.0
P38
5.3
À2.3
MST2
27.3
À3.3
25.3
21.8
À3.5
À9.0
À0.8
use of bromo intermediate 33 which was synthesized from 32 fol-
lowing the same sequence as in Scheme 1. Coupling of 33 to 4-
methylpiperidine led to the desired product 34 which was hydro-
lyzed to provide analog 23.
Acknowledgment
The authors thank the Analytical Division and Sample Logistics
at Pfizer Cambridge for their assistance on the project.
To synthesize the oxygen- or nitrogen-linker analogs, interme-
diate 31 was coupled with corresponding boronic acids or boronic
esters to give 35, which reacted with 2-hydroxyl or 2-amino
acetate, followed by hydrolysis to provide the desired products
24–30 (Scheme 3).
References and notes
1. Xiao, N.; Eidenschenk, C.; Krebs, P.; Brandl, K.; Blasius, A. L.; Xia, Y.;
Khovananth, K.; Smart, N. G.; Beutler, B. J. Immunol. 2009, 183, 7975.
2. (a) George, D.; Salmeron, A. Curr. Topics Med. Chem. 2009, 9, 611. and references
therein.; (b) Hall, J. P.; Kurdi, Y.; Hsu, S.; Cuozzo, J.; Liu, J.; Telliez, J. –B.; Seidl, K.
J.; Winkler, A.; Hu, Y.; Green, N.; Askew, G. R.; Tam, S.; Clark, J. D.; Lin, L. –L. J.
Biol. Chem. 2007, 282, 33295.
3. (a) Choy, E. H.; Panayi, G. S. N. Eng. J. Med. 2001, 344, 907; (b) Feldmann, M.;
Maini, R. N. Annu. Rev. Immunol. 2001, 19, 163; (c) Smolen, J. S.; Steiner, G. Nat.
Rev. Drug Disc. 2003, 2, 473; (d) Furst, D. E. Clin. Therapeutics 2004, 26, 1960; (e)
Simmons, D. L. Drug Discovery Today 2006, 11, 210.
4. (a) Dumitru, C. D.; Ceci, J. D.; Tsatasnis, C.; Kontoyiannis, D.; Stamatakis, K.; Lin,
J. H.; Patriotis, C.; Jenkins, N. A.; Copeland, N. G.; Kollias, G.; Tsichlis, P. N. Cell
2000, 103, 1071; (b) Sugimoto, K.; Ohata, M.; Miyoshi, J.; Ishizaki, H.; Tsuboi,
N.; Masuda, A.; Yoshikai, Y.; Takamoto, M.; Sugane, K.; Matsuo, S.; Shimada, Y.;
Matsuguchi, T. J. Clin. Invest. 2004, 114, 857.
Several compounds (compounds 5, 7, 8, 10) were selected to
investigate their binding to Tpl2. A Biacore-based competitive
binding assay consisted of a reference compound immobilized on
a sensor chip surface (250–470 RU) by amine coupling to measure
Tpl2 binding in the presence or absence of compound. Tpl2 binds
the reference compound as shown in Figure 6, solid lines by the in-
crease in RU during the injection time of 2 min (Fig. 6A and C) or
1 min. (Fig. 6B). In the presence of excess soluble reference com-
pound, no Tpl2 binding was observed (Fig. 6A, dashed line). As ex-
pected, Staurosporine (Fig. 6A, dotted line) did not compete for the
binding of Tpl2. In the presence of compound 5 (Fig. 6B) or com-
pounds 7, 8 or 10 (Fig. 6C) no Tpl2 binding was observed. Thus,
the compounds 5, 7, 8 and 10 bind Tpl2 and prevent Tpl2 binding
to the reference compound surface. However, initial test of these
compounds in cell assay (human monocyte) measuring the inhibi-
tion of phosphorylation of ERK did not show measurable inhibition,
which might be due to the poor permeability associated with the
carboxylic acids.
Compounds 17 and 28 were selected for kinase selectivity pro-
filing with an invitrogen panel of kinases. As shown in Table 4,
these compounds showed an overall good selectivity profile. Of
the 39 kinases tested, only one kinase (Aurora A) showed >60%
inhibition.
In summary, a new series of thieno[3,2-d]pyrimidines has been
identified as potent and selective Tpl2 kinase inhibitors following
traditional SAR approach and molecular modeling studies. The
5. In house data.
6. (a) Wu, J.; Green, N.; Hotchandani, R.; Hu, Y.; Condon, J.; Huang, A.; Kaila, N.; Li,
H.-Q.; Guler, S.; Li, W.; Tam, S. Y.; Wang, Q.; Pelker, J.; Marusic, S.; Hsu, S.; Hall,
J. P.; Telliez, J.-B.; Cui, J.; Lin, L.-L. Bioorg. Med. Chem. Lett. 2009, 19, 3485; (b)
Green, N.; Hu, Y.; Janz, K.; Li, H.-Q.; Kaila, N.; Guler, S.; Thomason, J.; Joseph-
McCarthy, D.; Tam, S. Y.; Hotchandani, R.; Wu, J.; Huang, A.; Wang, Q.; Leung,
L.; Pelker, J.; Marusic, S.; Hsu, S.; Telliez, J.-B.; Hall, J. P.; Cuozzo, J. W.; Lin, L.-L. J.
Med. Chem. 2007, 50, 4728; (c) Kaila, N.; Green, N.; Li, H.-Q.; Hu, Y.; Janz, K.;
Gavrin, L. K.; Thomason, J.; Tam, S.; Powell, D.; Cuozzo, J.; Hall, J. P.; Telliez, J.-
B.; Hsu, S.; Nickerson-Nutter, C.; Wang, Q.; Lin, L.-L. Bioorg. Med. Chem. 2007,
15, 6425; (d) Hu, Y.; Green, N.; Gavrin, L. K.; Janz, K.; Kaila, N.; Li, H.-Q.;
Thomason, J. R.; Cuozzo, J. W.; Hall, J. P.; Hsu, S.; Nickerson-Nutter, C.; Telliez,
J.-B.; Lin, L.-L.; Tam, S. Bioorg. Med. Chem. Lett. 2006, 16, 6067; (e) Gavrin, L. K.;
Green, N.; Hu, Y.; Janz, K.; Kaila, N.; Li, H.-Q.; Tam, S. Y.; Thomason, J. R.;
Gopalsamy, A.; Ciszewski, G.; Cuozzo, J. W.; Hall, J. P.; Hsu, S.; Telliez, J.-B.; Lin,
L.-L. Bioorg. Med. Chem. Lett. 2005, 15, 5288.
7. (a) Cusack, K.; Allen, H.; Bischoff, A.; Clabbers, A.; Dixon, R.; Fix-Stenzel, S.;
Friedman, M.; Gaumont, Y.; George, D.; Gordon, T.; Grongsaard, P.; Janssen, B.;
Jia, Y.; Moskey, M.; Quinn, C.; Salmeron, A.; Thomas, C.; Wallace, G.; Wishart,
N.; Yu, Z. Bioorg. Med. Chem. Lett. 2009, 19, 1722; (b) George, D.; Friedman, M.;
Allen, H.; Argiriadi, M.; Barberis, C.; Bischoff, A.; Clabbers, A.; Cusack, K.; Dixon,
R.; Fix-Stenzel, S.; Gordon, T.; Janssen, B.; Jia, Y.; Moskey, M.; Quinn, C.;
Salmeron, J.-A.; Wishart, N.; Woller, K.; Yu, Z. Bioorg. Med. Chem. Lett. 2008, 18,
4952.
most potent compound was found to have
a Tpl2 IC50 of
0.18 M. Proposed binding mode suggested that the binding mode
l
8. Several other heterocycles such as 3-pyridyl, 4-chloro-3-pyridyl, 5-
methylthiophenyl, 3,5-dimethylisoxazol analogs were also prepared, but all
resulted in the loss of activity (Tpl2 IC50 >100 lM).
9. Blagg, J. Burger’s Medicinal Chemistry Drug Discovery and Development, seventh
ed; Wiley, 2010. Vol. 2, pp. 1–34.
could be flipped depending on the substitution. Primarily the car-
boxylic acid chain extends to the solvent pocket and the substi-
tuted phenyl ring points to the Lys region to engage interactions
in the hydrophobic pocket. Biacore studies showed evidence of
these molecules binding to the protein.
10. The amides tried include N-methylacetamide, N,N-dimethylacetamide;
isosteric heterocycles include pyridine, pyrimidine and imidazole.