alkynes,8,9 alkenes,10 1,3-dienes,11 bis-1,3-dienes,12 and
allenes13 also affording carboxylic acids (Scheme 1, eq 2);
and (3) the cycloaddition of CO2 and diynes affording
pyrones (Scheme 1, eq 3).14 Thus, activation of CO2 is still
mostly limited to the simple substrates for preparation of
simple carboxylic acids except for those noted in ref 14.
intramolecular transmetalation of intermediate A in the
presence of ZnMe2, forming intermediate B (Scheme 3). In
addition, the cyclic structure of intermediate C may also
increase the reactivity of its CÀZn bond with the Aresta’s
complex D because of the release of the ring strain to form
R-alkylidene-γ-butyrolactones E-2efficiently via lactonization.
Scheme 1. Transition-Metal-Catalyzed CO2-Activation Form-
ing CÀC Bonds
Scheme 3. Concept for the Synthesis of γ-Butyrolactones based
on the Previous Mechanistic Study Reported in Ref 9a
In 2005, Mori et al. reported catalytic alkylative carboxy-
lation of alkynes by using 20 mol % of Ni(cod)2 and 10
equiv of DBU with moderate regioselectivity via a cyclo-
metalation mechanism.8 However, to the best of our knowl-
edge, alkyl-carboxylation, which would be very efficient
for the synthesis of stereodefined fully substituted R,β-
unsaturated alkenoic acids, has not been well established.
Recently, we have developed a hydrocarboxylation of
alkynes with a unique mechanism by using ZnEt2 as the
hydride source via β-elimination.9a We reasoned that the
protocol may be easily extended to methylcarboxylation
by following the established reaction conditions for al-
kynes in MeCN and 3-butynyl tosylamides in DMSO
reported in ref 9a. However, as shown in Scheme 2, the
methylcarboxylation of phenyl-substituted alkynes in MeCN
or 4-phenylbutynyl tosylamide in DMSO all yielded the
corresponding carboxylic acids in unsatisfactory yields
and poor regioselectivity (for further results, see Table S1
in the Supporting Information).
As we know, R-methylene- or alkylidene-γ-butyrolac-
tone is a commonly observed structural unit in many biolo-
gically active natural products (Figure 1)15 showing anti-
cancer, antimalarial, antiviral, antibacterial, antifungal,
and anti-inflammatory activities.16,17 The exo-cyclic dou-
ble bond is not only responsible for their interesting
biological properties but also serves as a functional group
for further manipulations in organic synthesis.18 In this
paper, we report our recent realization of such a concept.
(14) Synthesis of pyrones using 5 mol % of Ni(cod)2, 10 mol % of IPr-
NHC in 1 atm of CO2, see: (a) Louie, J.; Gibby, J. E.; Farnworth, M. V.;
Tekavec, T. N. J. Am. Chem. Soc. 2002, 124, 15188. Using 5À10 mol %
of Ni(cod)2 and 10À20 mol % of phosphine ligand (P(n-C8H17 3
) and
dppb) in 50 kg/cm2 of CO2 at 100À120 °C see:(b) Tsuda, T.; Morikawa,
S.; Sumiya, R.; Saegusa, T. J. Org. Chem. 1988, 53, 3140. For examples
when 10 mol % or more of Ni(cod)2 was used see:(c) Tsuda, T.;
Morikawa, S.; Saegusa, T. J. Chem. Soc., Chem. Commun. 1989, 9.
(d) Tsuda, T.; Morikawa, S.; Hasegawa, N.; Saegusa, T. J. Org. Chem.
1990, 55, 2978. (e) Tekavec, T. N.; Arif, A. M.; Louie, J. Tetrahedron
2004, 60, 7431.
Scheme 2. Methylcarboxylation of Phenyl-Substituted Alkynes
or 4-Phenyl-3-butynyl Tosylamide
(15) (a) Fan, X.; Zi, J.; Zhu, C.; Xu, W.; Cheng, W.; Yang, S.; Guo,
Y.; Shi, J. J. Nat. Prod. 2009, 72, 1184. (b) Sheu, J.-H.; Ahmed, A. F.;
Shiue, R.-T.; Dai, C.-F.; Kuo, Y.-H. J. Nat. Prod. 2002, 65, 1904.
(c) Smith, A. B., III; Toder, B. H.; Carroll, P. J.; Donohue, J.
J. Crystallogr. Spectrosc. Res. 1982, 12, 309. (d) Aoyagi, Y.; Yamazaki,
A.; Nakatsugawa, C.; Fukaya, H.; Takeya, K.; Kawauchi, S.; Izum, H.
Org. Lett. 2008, 10, 4429.
(16) For comprehensive reviews, see: (a) Grieco, P. A. Synthesis 1975,
67. (b) Hoffman, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. Engl. 1985,
24, 94. (c) Sarma, J. C.; Sharma, R. P. Heterocycles 1986, 24, 441.
(d) Petragnani, N.; Ferraz, H. M. C.; Silva, G. V. J. Synthesis 1986, 157.
(e) Kitson, R. R. A.; Millemaggi, A.; Taylor, R. J. K. Angew. Chem., Int.
Ed. 2009, 48, 9426.
(17) (a) De Bernardi, M.; Garlaschelli, L.; Toma, L.; Vidari, G.; Vita-
Finzi, P. Tetrahedron 1991, 47, 7109. (b) Vidari, G.; Lanfranchi, G.;
Pazzi, N.; Serra, S. Tetrahedron Lett. 1999, 40, 3063. (c) Tesaki, S.;
Kikuzaki, H.; Yonemori, S.; Nakatani, N. J. Nat. Prod. 2001, 64, 515.
(d) Baraldi, P. G.; Nunez, M. C.; Tabrizi, M. A.; Clercq, E. D.; Balzarini,
We reasoned that the OH group in the readily available
homopropargylic alcohols may be acting as the directing
group to increase the regioselectivity because of the
(11) Takaya, J.; Sasano, K.; Iwasawa, N. Org. Lett. 2011, 13, 1698.
(12) (a) Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2002, 124, 10008.
(b) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem.
Soc. 2004, 126, 5956.
ꢀ
J.; Bermejo, J.; Estevez, F.; Romagnoli, R. J. Med. Chem. 2004, 47, 2877.
(e) Janecki, T.; Bzaszczyk, E.; Studzian, K.; Janecka, A.; Krajewska, U.;
Rozalski, M. J. Med. Chem. 2005, 48, 3516. (f) Romagnoli, R.; Baraldi,
P. G.; Tabrizi, M. A.; Bermejo, J.; Estevez, F.; Borgatti, M.; Gambari,
ꢀ_
ꢀ
(13) (a) Takimoto, M.; Kawamura, M.; Mori, M.; Sato, Y. Synlett
2005, 2019. (b) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2008, 130, 15254.
R. J. Med. Chem. 2005, 48, 7906. (g) Oh, S.; Jeong, I. H.; Shin, W.-S.;
Wang, Q.; Lee, S. Bioorg. Med. Chem. Lett. 2006, 16, 1656.
Org. Lett., Vol. 13, No. 22, 2011
6047