Journal of the American Chemical Society
COMMUNICATION
’ ASSOCIATED CONTENT
A.; Bolte, M.; Lerner, H.-W.; Wagner, M. Chem. Commun. 2010, 3592.
(f) Li, H.; J€akle, F. Macromol. Rapid Commun. 2010, 31, 915. (g) Taniguchi,
T.; Yamaguchi, S. Organometallics 2010, 29, 5732.
S
Supporting Information. Experimental details, character-
b
(8) Non-tandem reactions: (a) Muetterties, E. L. J. Am. Chem. Soc. 1959,
81, 2597. (b) Bujwid, Z. J.; Gerrard, W.; Lappert, M. F. Chem. Ind. 1959, 1091.
(c) Genaev, A. M.; Nagy, S. M.; Salnikov, G. E.; Shubin, V. G. Chem.
Commun. 2000, 1587. (d) Vries, T. S. D.; Prokofjevs, A.; Harvey, J. N.;
Vedejs, E. J. Am. Chem. Soc. 2009, 131, 14679. (e) Grosso, A. D.; Pritchard,
R. G.; Muryn, C. A.; Ingleson, M. J. Organometallics 2010, 29, 241. (f)
Grosso, A. D.;Singleton,P. J.;Muryn, C. A.;Ingleson,M. J.Angew. Chem., Int.
Ed. 2011, 50, 2102. See also ref 3. Tandem phospholylation reaction: (g)
Hatakeyama, T.; Hashimoto, S.; Nakamura, M. Org. Lett. 2011, 13, 2130.
(9) (a) Kawaguchi, M. Adv. Mater. 1997, 9, 615. (b) Wang, W. L.;
Bai, X. D.; Liu, K. H.; Xu, Z.; Golberg, D.; Bando, Y.; Wang, E. G.
J. Am. Chem. Soc. 2006, 128, 6530. (c) Kim, S. Y.; Park, J.; Choi, H. C.;
Ahn, J. P.; Hou, J. Q.; Kang, H. S. J. Am. Chem. Soc. 2007, 129,
1705. (d) Caretti, I.; Torres, R.; Gago, R.; Landa-Cꢀanovas, A. R.;
Jimꢀenez, I. Chem. Mater. 2010, 22, 1949.
(10) Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg,
S.; Mouth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X.; M€ullen, K.; Fasel, R.
Nature 2010, 466, 470.
(11) (a) Fort, E. H.; Scott, L. T. Angew. Chem., Int. Ed. 2010, 49, 6626.
(b) Fort, E. H.; Scott, L. T. J. Mater. Chem. 2011, 21, 1373. (c) Smalley, R. E.;
Li, Y.; Moore, V. C.; Price, B. K.; Colorado, R., Jr.; Schmidt, H. K.; Hauge,
R. H.; Barron, A. R.; Tour, J. M. J. Am. Chem. Soc. 2006, 128, 15824. (d) Yu,
X.; Zhang, J.; Choi, W.; Choi, J.-Y.; Kim, J. M.; Gan, L.; Liu, Z. Nano Lett.
2010, 10, 3343.
ization data, and computations. This material is available free of
’ AUTHOR INFORMATION
Corresponding Author
hatake@scl.kyoto-u.ac.jp; seki@chem.eng.osaka-u.ac.jp; masaharu@
scl.kyoto-u.ac.jp
’ ACKNOWLEDGMENT
This research was supported by the Japan Society for the
Promotion of Science (JSPS) through the “Funding Program for
Next Generation World-Leading Researchers (NEXT Program)”,
initiated by the Council for Science and Technology Policy
(CSTP). The study was also supported by a Grant-in-Aid for
Scientific Research on Innovative Areas “Reaction Integration”
(No. 2105, 22106524) and a Grant-in-Aid for Young Scientists
(23685020) from MEXT and JSPS, and Asahi Glass Foundation.
We are grateful to Professors Hikaru Takaya and Takahiro Sasamori
(Kyoto University) for their guidance in the X-ray crystallography
experiments. We also thank Yasujiro Murata (Kyoto University) for
permitting us to use the cyclic voltammeter at the university.
(12) Bis(biphenyl-2-yl)amine 1 was prepared in 98% yield from
commercially available 2-bromobiphenyl and 2-aminobiphenyl.
(13) The typical length of the BdN bond is 1.37ꢀ1.40 Å. On the
basis of the atomic radii of B and N, the length of the BꢀN bond is
expected to be 1.58 Å. See ref 2b and citations therein.
(14) (a) Grozema, F. C.; Siebbeles, L. D. A.; Warman, J. M.; Seki, S.;
Tagawa, S.; Scherf, U. Adv. Mater. 2002, 14, 228. (b) Acharya, A.; Seki,
S.; Saeki, A.; Koizumi, Y.; Tagawa, S. Chem. Phys. Lett. 2005, 404,
35. (c) Acharya, A.; Seki, S.; Koizumi, Y.; Saeki, A.; Tagawa, S. J. Phys.
Chem. B 2005, 109, 20174. (d) Saeki, A.; Seki, S.; Takenobu, T.; Iwasa,
Y.; Tagawa, S. Adv. Mater. 2008, 20, 920.
(15) (a) Velde, G. T.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca
Guerra, C.; Gisbergen, S. J. A. V.; Snijders, J. G.; Ziegler, T. J. Comput.
Chem. 2001, 22, 931. (b) Senthilkumar, K.; Grozema, F. C.; Bickelhaupt,
F. M.; Siebbeles, L. D. A. J. Chem. Phys. 2003, 119, 9809. (c) Wen, S.-H.;
Li, A.; Song, J.; Deng, W.-Q.; Han, K.-L.; Goddard, W. A., III J. Phys.
Chem. B 2009, 113, 8813.
(16) Electronic coupling (V) and reorganization energy (λ) calcula-
tions were performed using the PW91 or B3LYP hybrid functional with
the DZP basis set of the ADF2010 program. The electronic hopping rate
(W) is proportional to V2 based on the MarcusꢀHush equation. See ref
14c and citations therein.
’ REFERENCES
(1) Reviews: (a) Fabian, J.; Nakazumi, H.; Matsuoka, M. Chem.
Rev. 1992, 92, 1197. (b) Scherf, U. J. Mater. Chem. 1999, 9, 1853.
(c) Mitschke, U.; B€auerle, P. J. Mater. Chem. 2000, 10, 1471. (d) Watson,
M. D.; Fechtenk€otter, A.; M€ullen, K. Chem. Rev. 2001, 101, 1267.
(e) Bendikov, M.; Wudl, F.; Perepichka, D. F. Chem. Rev. 2004,
104, 4891. (f) Klauk, H. Organic Electronics; Wiley-VCH: Weinheim,
2006. (g) Anthony, J. E. Chem. Rev. 2006, 106, 5028. (h) Sergeyev, S.;
Pisula, W.; Geerts, Y. H. Chem. Soc. Rev. 2007, 36, 1902.
(2) Reviews: (a) Liu, Z.; Marder, T. B. Angew. Chem., Int. Ed. 2008,
47, 242. (b) Bosdet, M. J. D.; Piers, W. E. Can. J. Chem. 2009, 87, 8.
(c) Ashe, A. J., III Organometallics 2009, 28, 4236.
(3) (a) Dewar, M. J. S.; Kubba, V. P.; Pettit, R. J. Chem. Soc.
1958, 3073. (b) Dewar, M. J. S.; Kaneko, C.; Bhattacharjee, M. K.
J. Am. Chem. Soc. 1962, 84, 4884. (c) Culling, G. C.; Dewar, M. J. S.;
Marr, P. A. J. Am. Chem. Soc. 1964, 86, 1125. (d) Davies, K. M.; Dewar,
M. J. S.; Rona, P. J. Am. Chem. Soc. 1967, 89, 6294.
(4) (a) Emslie, D. J. H.; Piers, W. E.; Parvez, M. Angew. Chem., Int. Ed.
2003, 42, 1252. (b) Jaska, C. A.; Emslie, D. J. H.; Bosdet, M. J. D.; Piers,
W. E.; Sorensen, T. S.; Parvez, M. J. Am. Chem. Soc. 2006, 128, 10885.
(c) Bosdet, M. J. D.; Jaska, C. A.; Piers, W. E.; Sorensen, T. S.; Parvez, M. Org.
Lett. 2007, 9, 1395. (d) Bosdet, M. J. D.; Piers, W. E.; Sorensen, T. S.; Parvez,
M. Angew. Chem., Int. Ed. 2007, 46, 4940. (e) Bosdet, M. J. D.; Piers, W. E.;
Sorensen, T. S.; Parvez, M. Can. J. Chem. 2010, 88, 426.
(5) (a) Ashe, A. J., III; Fang, X. Org. Lett. 2000, 2, 2089.
(b) Ashe, A. J., III; Fang, X.; Kampf, J. W. Organometallics 2001,
20, 5413. (c) Pan, J.; Kampf, J. W.; Ashe, A. J., III Organometallics
2004, 23, 5626. (d) Fang, X.; Yang, H.; Kampf, J. W.; Banaszak Holl,
M. M.; Ashe, A. J., III Organometallics 2006, 25, 513. (e) Pan, J.; Kampf,
J. W.; Ashe, A. J., III Org. Lett. 2007, 9, 679.
(17) Redox potentials were determined by cyclic voltammetry mea-
surements in THF (Ered) or CH2Cl2 (Eox) with 0.10 M n-Bu4N+PF6ꢀ or
n-Bu4N+BPh4ꢀ. See the Supporting Information for details.
(18) DFTcalculations, including NICSanalysis, wereperformedusing
the B3LYP hybrid functional with the 6-31G(d) basis set implemented in
the Gaussian 03or 09 program. Seethe Supporting Informationfordetails.
(19) Reported NICS(1) values for the BNC4 rings in BN-substituted
aromatics are ꢀ4.5 (ref 4d) and ꢀ9.5 (ref 4e).
(20) Moran, D.; Stahl, F.; Bettinger, H. F.; Schaefer, H. F., III;
Schleyer, P. V. R. J. Am. Chem. Soc. 2003, 125, 6746.
(6) (a) Lamm, A. N.; Liu, S.-Y. Mol. BioSyst. 2009, 5, 1303.
(b) Marwitz, A. J. V.; Jenkins, H. T.; Zakharov, L. N.; Liu, S.-Y. Angew.
Chem., Int. Ed. 2010, 49, 7444. (c) Abbey, E. R.; Zakharov, L. N.; Liu,
S.-Y. J. Am. Chem. Soc. 2011, 133, 11508.
(21) NICS(1) values for the four BNC4 rings in B are ꢀ2.2 to ꢀ2.6,
while those for the six C6 rings are ꢀ10.1 to ꢀ11.2. See the Supporting
Information for details.
(7) Recent examples for aromatic compounds with boron and nitrogen
substituents: (a) Pro~n, A.; Zhou, G.; Norouzi-Arasi, H.; Baumgarten, M.;
M€ullen, K. Org. Lett. 2009, 11, 3550. (b) Sachdev, H.; Zahn, N.; Huch, V. Z.
Anorg. Allg. Chem. 2009, 635, 2112. (c) Agou, T.; Sekine, M.; Kobayashi, J.;
Kawashima, T. Chem.—Eur. J. 2009, 15, 5056. (d) Wakamiya, A.; Mori, K.;
Araki, T.; Yamaguchi, S. J. Am. Chem. Soc. 2009, 131, 10850. (e) Lorbach,
(22) Isoelectronic carbon analogue: Mochida, K.; Kawasumi, K.;
Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2011, 133, 10716.
(23) Eox = 0.22 V, Ered = ꢀ1.87 V: Sakamoto, Y.; Suzuki, T.;
Kobayashi, M.; Gao, Y.; Fukai, Y.; Inoue, Y.; Sato, F.; Tokito, S. J. Am.
Chem. Soc. 2004, 126, 8138.
18617
dx.doi.org/10.1021/ja208950c |J. Am. Chem. Soc. 2011, 133, 18614–18617