2 (a) E. Bılkova, M. Sedla
´ ´ ´
´
k, B. Dvorak, K. Ventura, P. Knotek and
L. Benes, Org. Biomol. Chem., 2010, 8, 5423–5430; (b) J. J. Li,
F. Zhao and J. Li, Appl. Microbiol. Biotechnol., 2011, 90, 427–443;
(c) Y. Liu, Z.-X. Yang, Y. Chen, Y. Song and N. Shao, ACS Nano,
2008, 2, 554–560; (d) Y. Liu, J. Shi, Y. Chen and C.-F. Ke, Angew.
Chem., Int. Ed., 2008, 47, 7293–7296; (e) S. Loethen, J. M. Kim
and D. H. Thompson, Polym. Rev., 2007, 47, 383–418;
(f) A. Nelson, J. M. Belitsky, S. Vidal, C. S. Joiner, L. G. Baum
and J. F. Stoddart, J. Am. Chem. Soc., 2004, 126, 11914–11922;
(g) Y. Liu, H. Wang, H.-Y. Zhang and P. Liang, Chem. Commun.,
2004, 40, 2266–2267.
3 (a) T. Ogoshi, Y. Nishida, T.-a. Yamagishi and Y. Nakamoto,
Macromolecules, 2010, 43, 7068–7072; (b) Y. Inoue, M. Miyauchi,
H. Nakajima, Y. Takashima, H. Yamaguchi and A. Harada,
Macromolecules, 2007, 40, 3256–3262; (c) C. A. Dreiss,
T. Cosgrove, F. N. Newby and E. Sabadini, Langmuir, 2004, 20,
9124–9129; (d) P. Hodge, P. Monvisade, G. J. Owen, F. Heatley
and Y. Pang, New J. Chem., 2000, 24, 703–709; (e) P. E. Mason,
W. S. Bryant and H. W. Gibson, Macromolecules, 1999, 32,
1559–1569.
Fig. 4 Concentration dependence of diffusion coefficient D (500 MHz,
1 : 1 CDCl3–CD3CN, 298K) of individual P1 (m), and mixtures of P1
with 0.50 equiv. D1 ( ) (when the systems have different assemblies, we
chose the larger one).
4 F. Wang, B. Zheng, K. Zhu, Q. Zhou, C. Zhai, S. Li, N. Li and
F. Huang, Chem. Commun., 2009, 4375–4377.
5 T. F. A. De Greef, M. M. J. Smulders, M. Wolffs, A. P. H.
J. Schenning, R. P. Sijbesma and E. W. Meijer, Chem. Rev., 2009,
109, 5687–5754.
6 (a) Y.-S. Su, J.-W. Liu, Y. Jiang and C.-F. Chen, Chem.–Eur. J.,
2011, 17, 2435–2441; (b) Y. Kohsaka, K. Nakazono, Y. Koyama,
S. Asai and T. Takata, Angew. Chem., Int. Ed., 2011, 50,
4872–4875; (c) F. Wang, J. Zhang, X. Ding, S. Dong, M. Liu,
B. Zheng, S. Li, L. Wu, Y. Yu, H. Gibson and F. Huang, Angew.
Chem., Int. Ed., 2010, 49, 1090–1094; (d) T. Bilig, T. Oku,
Y. Furusho, Y. Koyama, S. Asai and T. Takata, Macromolecules,
2008, 41, 8496–8503; (e) T. Oku, Y. Furusho and T. Takata,
Angew. Chem., Int. Ed., 2004, 43, 966–969.
ether units of P1 to form the pseudorotaxanes. The diffusion
constants of the mixtures are much smaller than those of the
individual P1 at the same concentrations from 4.0 mM to
120.0 mM, suggesting the increase in the average size of the
aggregates due to the cross-linking of the P1 polymeric
structures to form the polypseudorotaxane networks.
In summary, we have constructed polypseudorotaxane
networks with the cross-linking of linear quadruple hydrogen
bonded supramolecular polymer backbones by the bisparaquat
molecules in solution. This was confirmed by the combination
of various techniques, such as variable-concentration 1H NMR,
NOESY, DOSY, UV-Vis spectra, and viscosity measurement.
The reversible and tunable supramolecular polymer backbones
would potentially bring unique, applicable properties to these
traditional polypseudorotaxane structures. The construction
of supramolecular [2]cantenane and new polypseudorotaxanes
based on the ureidopyrimidione unit is now underway in our lab.
We gratefully thank the financial support of National Natural
Science Foundation of China (No. 20602017, 20932004,
21072093), National Basic Research Program of China
(2007CB925103, 2011CB808600), the Doctoral Fund of Ministry
of Education of China (20090091110017).
7 (a) L. Zhu, M. Lu, Q. Zhang, D. Qu and H. Tian, Macromolecules,
2011, 44, 4092–4097; (b) G. Groger, W. Meyer-Zaika, C. Bottcher,
¨
¨
F. Grohn, C. Ruthard and C. Schmuck, J. Am. Chem. Soc., 2011,
¨
133, 8961–8971; (c) F. Grimm, N. Ulm, F. Grohn, J. During and
¨
A. Hirsch, Chem.–Eur. J., 2011, 17, 9478–9488; (d) G. Groger,
¨
¨
V. Stepanenko, F. Wurthner and C. Schmuck, Chem. Commun.,
¨
2009, 698–700; (e) H. Hofmeier and U. S. Schubert, Chem. Com-
mun., 2005, 2423–2432; (f) H. Hofmeier, A. El-ghayoury, A. P. H.
J. Schenning and U. S. Schubert, Chem. Commun., 2004, 318–319.
8 S.-L. Li, T. Xiao, Y. Wu, J. Jiang and L. Wang, Chem. Commun.,
2011, 47, 6903–6905.
9 (a) S.-L. Li, T. Xiao, W. Xia, X. Ding, Y. Yu, J. Jiang and
L. Wang, Chem.–Eur. J., 2011, DOI: 10.1002/chem.201100691;
(b) A. T. ten Cate, H. Kooijman, A. L. Spek, R. P. Sijbesma and
E. W. Meijer, J. Am. Chem. Soc., 2004, 126, 3801–3808;
(c) R. P. Sijbesma, F. H. Beijer, L. Brunsveld, B. J. B. Folmer,
J. Hirschberg, R. F. M. Lange, J. K. L. Lowe and E. W. Meijer,
Science, 1997, 278, 1601–1604.
Notes and references
10 M. Perez-Alvarez, F. M. Raymo, S. J. Rowan, D. Schiraldi,
´
J. F. Stoddart, Z.-H. Wang, A. J. P. White and D. J. Williams,
Tetrahedron, 2001, 57, 3799–3808.
1 (a) J. Terao, K. Kimura, S. Seki, T. Fujihara and Y. Tsuji, Chem.
Commun., 2011, DOI: 10.1039/C1CC13012A; (b) J. Terao, K. Ikai,
N. Kambe, S. Seki, A. Saeki, K. Ohkoshi, T. Fujihara and
Y. Tsuji, Chem. Commun., 2011, 47, 6816–6818; (c) K. L. Liu,
J.-l. Zhu and J. Li, Soft Matter, 2010, 6, 2300–2311;
(d) K. Nakazono, K. Fukasawa, T. Sato, Y. Koyama and
T. Takata, Polym. J. (Tokyo), 2010, 42, 208–215; (e) Y.-G. Lee,
Y. Koyama, M. Yonekawa and T. Takata, Macromolecules, 2010,
43, 4070–4080; (f) A. Harada, Y. Takashima and H. Yamaguchi,
Chem. Soc. Rev., 2009, 38, 875–882; (g) H. W. Gibson, A. Farcas,
J. W. Jones, Z. Ge, F. Huang, M. Vergne and D. M. Hercules,
J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 3518–3543;
(h) S. Kang, B. M. Berkshire, Z. Xue, M. Gupta, C. Layode,
P. A. May and M. F. Mayer, J. Am. Chem. Soc., 2008, 130,
15246–15247; (i) C. Park, K. Oh, S. C. Lee and C. Kim, Angew.
Chem., Int. Ed., 2007, 46, 1455–1457; (j) Y. Liu, L. Yu, Y. Chen,
Y.-L. Zhao and H. Yang, J. Am. Chem. Soc., 2007, 129,
10656–10657; (k) F. Huang and H. W. Gibson, Prog. Polym.
Sci., 2005, 30, 982–1018; (l) T. Takata, H. Kawasaki, N. Kihara
and Y. Furusho, Macromolecules, 2001, 34, 5449–5456.
11 F. H. Beijer, R. P. Sijbesma, H. Kooijman, A. L. Spek and
E. W. Meijer, J. Am. Chem. Soc., 1998, 120, 6761–6769.
12 (a) Z. Zhang, Y. Luo, J. Chen, S. Dong, Y. Yu, Z. Ma and
F. Huang, Angew. Chem., Int. Ed., 2011, 50, 1397–1401; (b) Z. Niu,
F. Huang and H. W. Gibson, J. Am. Chem. Soc., 2011, 133,
2836–2839; (c) F. Wang, C. Han, C. He, Q. Zhou, J. Zhang,
C. Wang, N. Li and F. Huang, J. Am. Chem. Soc., 2008, 130,
11254–11255; (d) O. A. Scherman, G. B. W. L. Ligthart,
R. P. Sijbesma and E. W. Meijer, Angew. Chem., Int. Ed., 2006,
45, 2072–2076.
13 (a) X. Yan, M. Zhou, J. Chen, X. Chi, S. Dong, M. Zhang, X. Ding,
Y. Yu, S. Shao and F. Huang, Chem. Commun., 2011, 47, 7086–7088;
(b) H. Ohkawa, A. Takayama, S. Nakajima and H. Nishide, Org.
Lett., 2006, 8, 2225–2228; (c) H. M. Keizer, J. J. Gonzalez, M. Segura,
´
P. Prados, R. P. Sijbesma, E. W. Meijer and J. d. Mendoza,
Chem.–Eur. J., 2005, 11, 4602–4608; (d) B. J. B. Folmer,
R. P. Sijbesma and E. W. Meijer, J. Am. Chem. Soc., 2001, 123,
2093–2094.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 10755–10757 10757