Paper
Organic & Biomolecular Chemistry
pared with the unsubstituted case, but is still legible. The 11 J. Bialecki, J. Ruzicka and A. B. Attygalle, J. Mass Spectrom.,
blocking-experiment results reveal that the two orthos are the 2006, 41(9), 1195.
most likely positions that the benzyl anion attacks. The fore- 12 C. Matthias and D. Kuck, Croat. Chem. Acta, 2009, 82(1), 7.
going results are in accord with the orientation effect and reac- 13 R. D. Bowen, Acc. Chem. Res., 1991, 24(12), 364.
tivity in SNAr.
In addition, in the ortho-blocked case (10), no loss of 15 Y. P. Tu, Y. Huang, C. Atsriku, Y. You and J. Cunniff, Rapid
toluene was observed (Fig. 7b), which suggests that an ortho Commun. Mass Spectrom., 2009, 23(13), 1970.
hydrogen is mostly inclined to be transferred to generate 16 M. E. Crestoni, S. Fornarini, M. Lentini and M. Speranza,
product ion C. The other two cases (9, 11) are not applicable J. Phys. Chem., 1996, 100(20), 8285.
for the site-determination of PT because the benzylic 17 E. L. Oiestad and E. Uggerud, Int. J. Mass Spectrom., 2000,
14 P. Longevialle, Mass Spectrom. Rev., 1992, 11(3), 157.
protons of the methyl substituent may participate in the
PT process.23
199(1–3), 91–105.
18 H. E. Audier, F. Dahhani, A. Milliet and D. Kuck, Chem.
Commun., 1997, 429.
19 C. Matthias, K. Weniger and D. Kuck, Eur. Mass Spectrom.,
1995, 1(5), 445.
20 Y. F. Chai, S. F. Gan and Y. J. Pan, Acta Chim. Sin., 2012,
70(17), 1805.
Conclusions
We have investigated the interesting gas-phase benzyl anion
transfer reaction in the fragmentation of deprotonated N-(phe- 21 N. Hu, Y. P. Tu, K. Z. Jiang and Y. J. Pan, J. Org. Chem.,
nylsulfonyl)-benzeneacetamides by means of tandem mass 2010, 75(12), 4244.
spectrometry. The key step of the transfer reaction was sup- 22 H. Z. Sun, Y. F. Chai and Y. J. Pan, J. Org. Chem., 2012,
−
posed to be the formation of the complex [RC6H4CH2
C6H5SO2NCO], which was confirmed by comprehensive experi- 23 Y. F. Chai, L. Wang, H. Z. Sun, C. Guo and Y. J. Pan, J. Am.
mental and theoretical evidence. In addition, the BAT process Soc. Mass Spectrom., 2012, 23(5), 823.
was validated to be aromatic nucleophilic substitution in 24 C. Guo, L. Yue, M. Z. Guo, K. Z. Jiang and Y. J. Pan, J. Am.
which the benzyl anions act as nucleophiles. The present work Soc. Mass Spectrom., 2013, 24(3), 381.
can help us further understand gaseous nucleophilicity of the 25 T. P. Begley and S. E. Ealick, Curr. Opin. Chem. Biol., 2004,
/
77(16), 7098.
benzyl anion and expand the scope of INC-involved gas-phase
reactions.
8(5), 508.
26 J. D. Cowan, Nature, 1967, 213(5073), 237.
27 J. P. Richard, T. L. Amyes and M. M. Toteva, Acc. Chem.
Res., 2001, 34(12), 981.
28 B. Bockrath and L. M. Dorfman, J. Am. Chem. Soc., 1974,
96(18), 5708.
Acknowledgements
The authors gratefully acknowledge financial support from the 29 M. M. Olmstead and P. P. Power, J. Am. Chem. Soc., 1985,
National Natural Science Foundation of China (no. 21327010).
107(7), 2174.
30 Z. H. Lu, Y. F. Chai, J. C. Wang, Y. J. Pan, C. R. Sun and
S. Zeng, Rapid Commun. Mass Spectrom., 2014, 28(15), 1641.
31 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski,
J. A. Montgomery, R. E. Stratmann, J. C. Burant,
S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin,
M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi,
R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford,
J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui,
K. Morokuma, D. K. Malick, A. D. Rabuck,
K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz,
B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith,
M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez,
M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, J. L. Andres, C. Gonzalez, M. E. Head-Gordon,
S. Replogle and J. A. Pople, Gaussian 03, Gaussian, Inc.,
Pittsburgh, PA, 2003.
Notes and references
1 R. Bates and C. A. Ogle, Carbanion Chemistry, Springer-
Verlag, Berlin, 1983.
2 M. Smith and J. March, March’s Advanced Organic Chem-
istry: Reactions, Mechanisms, and Structure, John Wiley &
Sons, Inc., 605 Third Avenue, New York, 2001.
3 Z. X. Tian and S. R. Kass, Chem. Rev., 2013, 113(9), 6986.
4 C. Lifshitz, Chem. Soc. Rev., 2001, 30(3), 186.
5 L. Operti and R. Rabezzana, Mass Spectrom. Rev., 2006,
25(3), 483.
6 C. Lifshitz, Int. Rev. Phys. Chem., 1987, 6(1), 35.
7 S. K. Kim, T. Ha and J. P. Schermann, Phys. Chem. Chem.
Phys., 2010, 12(41), 13366.
8 M. Edelson-Averbukh and A. Mandelbaum, J. Chem. Soc.,
Perkin Trans. 2, 2000, 5, 989.
9 S. S. Shen, Y. F. Chai, G. F. Weng and Y. J. Pan, J. Am. Soc. 32 Y. Luo, Y. Li, K. M. Qiu, X. Lu, J. Fu and H. L. Zhu, Bioorg.
Mass Spectrom., 2014, 25(9), 1662. Med. Chem., 2011, 19(20), 6069.
10 C. Guo, K. Z. Jiang, L. Yue, Z. M. Xia, X. X. Wang and 33 Y. H. Jhan, T. W. Kang and J. C. Hsieh, Tetrahedron Lett.,
Y. J. Pan, Org. Biomol. Chem., 2012, 10(35), 7070.
2013, 54(9), 1155.
10210 | Org. Biomol. Chem., 2015, 13, 10205–10211
This journal is © The Royal Society of Chemistry 2015