Journal of the American Chemical Society
COMMUNICATION
was treated with nickel complex 15, an azacyclooctyne conjugated to
fluorescein (DIMAC-fluor),33 and an aminooxy-functionalized
FLAG peptide (H2NO-FLAG)32 (Figure 3A). After incubation
for 3 h, the mixture was separated into three portions, each of which
was analyzed by Western blot probing with one of the following
antibodies: α-biotin-HRP, α-fluorescein-HRP, or α-FLAG-HRP
(Figure 3B). As shown in Figure 3B, each labeling reagent, including
15, reacted only with its complementary bioorthogonal partner.34
Like the cyclooctyne and aminooxy probes, compound 15 showed
no significant labeling of proteins lacking its partner (quadricyclane),
nor did it interfere with the other bioorthogonal reactions.
In summary, the quadricyclane ligation is a promising bio-
orthogonal reaction that can be used for selective protein labeling
alongside other popular bioorthogonal chemistries. The two
reaction partners reliably form their covalent adduct in environs
as complex as cell lysates. The next challenge for this chemistry
will be applications to cell labeling.35 However, the quadricyclane
ligation in its present form is best suited for in vitro labeling
experiments; improvements will be important for its use in living
systems, where stabilizing additives such as K3Fe(CN)6 and diethyl-
dithiocarbamate are not ideal.36 More detailed studies into the balance
of Ni bis(dithiolene) reactivity and redox stability are warranted, as
well as investigations of the adduct’s photochemistry. Nonetheless,
our results herein suggest that reactions of quadricyclane constitute a
fertile sector of reactivity space for bioorthogonal chemistry.
Nakayama, H.; Sakamoto, K.; Kigawa, T.; Yabuki, T.; Matsuda, N.;
Shirouzu, M.; Takio, K.; Yokoyama, S.; Tachibana, K. ChemBioChem
2007, 8, 232.
(9) (a) Zeng, Y.; Ramya, T. N. C.;Dirksen, A.; Dawson, P. E.; Paulson,
J. C. Nat. Methods 2009, 6, 207. (b) Ren, H.; Xiao, F.; Zhan, K.; Kim, Y.-P.;
Xie, H.; Xia, Z.; Rao, J. Angew. Chem., Int. Ed. 2009, 48, 9658. (c) Ou, W.;
Uno, T.; Chiu, H.-P.; Grunewald, J.;Cellitti, S. E.; Crossgrove, T.; Hao, X.;
Fan, Q.; Quinn, L. L.; Patterson, P.; Okach, L.; Jones, D. H.; Lesley, S. A.;
Brock, A.; Geierstanger, B. H. Proc. Natl. Acad. Sci. U.S.A. 2011,
108, 10437.
(10) Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307.
(11) Petrov, V. A.; Vasil’ev, N. V. Curr. Org. Synth. 2006, 3, 215.
(12) Hill, W. E.; Szechi, J.; Hofstee, C.; Dane, J. H. Environ. Sci.
Technol. 1997, 31, 651.
(13) Watson, W. H.; Tavanaiepour, I.; Marchand, A. P.; Dave, P. R.
Acta Crystallogr. 1987, C43, 1356.
(14) Kabakoff, D. S.; Buenzil, J.-C. G.; Oth, J. F. M.; Hammond,
W. B.; Berson, J. A. J. Am. Chem. Soc. 1975, 97, 1510.
(15) (a) Domingo, L. R.; Saez, J. A.; Zaragoza, R. J.; Arno, M. J. Org.
Chem. 2008, 73, 8791. (b) Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin,
V. V.; Kolb, H. C.; Sharpless, K. B. Angew. Chem., Int. Ed. 2005, 44, 3275.
(16) (a) LeBlanc, B. F.; Sheridan, R. S. J. Am. Chem. Soc. 1985, 107,
4554. (b) Keana, J. F. W.; Guzikowski, A. P.; Ward, D. D.; Morat, C.; Van
Nice, F. L. J. Org. Chem. 1983, 48, 2654.
(17) Kajitani, M.; Kohara, M.; Kitayama, T.; Asano, Y.; Sugimori, A.
Chem. Lett. 1986, 2109.
(18) Gassman, P. G.; Patton, D. S. J. Am. Chem. Soc. 1968, 90, 7276.
(19) (a) Kajitani, M.; Kohara, M.; Kitayama, T.; Akiyama, T.;
Sugimori, A. J. Phys. Org. Chem. 1989, 2, 131–145. (b) Norbornadiene
also reacts with 2 to form an identical adduct, but at a rate that is 1000-
fold lower than observed with quadricyclane. See ref 19a.
(20) Kunkely, H.; Volger, A. Inorg. Chim. Acta 2001, 319, 183.
(21) (a) Madhu, V.; Das, S. K. Inorg. Chem. 2008, 47, 5055. (b)
Dalgleish, S.; Robertson, N. Chem. Commun. 2009, 46, 5826.
(22) Gareau, Y.; Beauchemin, A. Heterocycles 1998, 48, 2003.
(23) No oxidation of biotin was observed.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures and
b
supporting figures, schemes, and tables. This material is available
’ AUTHOR INFORMATION
(24) Compound 1’s hydrophobicity mandated the use of ethanol.
(25) (a) Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard, N. J.;
Chang, P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R. Proc. Natl.
Acad. Sci. U.S.A. 2007, 104, 16793. (b) Ning, X.; Guo, J.; Wolfert, M. A.;
Boons, G.-J. Angew. Chem., Int. Ed. 2008, 47, 2253. (c) Debets, M. F.; van
Berkel, S. S.; Schoffelen, S.; Rutjes, F. P. J. T.; van Hest, J. C. M.; van
Delft, F. L. Chem. Commun. 2010, 46, 97.
(26) (a) Miller, T. R.; Dance, I. G. J. Am. Chem. Soc. 1973, 95, 6970.
(b) Nakazumi, H.; Takamura, R.; Kitao, T. J. Soc. Dyers Colour. 1991,
107, 459. (c) Chen, C.-T.; Liao, S.-Y.; Lin, K.-J.; Chen, C.-H.; Lin, T-Y.J.
Inorg. Chem. 1999, 38, 2734.
Corresponding Author
’ ACKNOWLEDGMENT
Wethank N. Agard and J. Hudak for Az-DHFR andCHO-MBP
samples and R. Bergman, C. Gordon, J. Jewett, and K. Palaniappan
for helpful discussions. This work was funded by a grant to C.R.B.
from the NIH (GM058867). E.M.S. was supported by a predoc-
toral fellowship from the Organic Division of the ACS.
(27) (a) Brown, J. R. Albumin Structure, Function and Uses; Pergamon
Press: New York, 1977; pp 27ꢀ51. (b) An Ellman’s test for sulfhydryl
groups indicated that 30ꢀ40% of the predicted free cysteine residues on
commercial BSA were available for disulfide exchange.
(28) For the synthesis of 16, see Scheme S1.
(29) For the synthesis of 17, see Scheme S2.
(30) Chang, P. V.; Prescher, J. A.; Hangauer, M. J.; Bertozzi, C. R.
J. Am. Chem. Soc. 2007, 129, 8400.
(31) Kiick, K. L.; Saxon, E.; Tirrell, D. A.; Bertozzi, C. R. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 19.
(32) Carrico, I. S.; Carlson, B. L.; Bertozzi, C. R. Nat. Chem. Biol.
2007, 3, 321.
(33) For the synthesis of DIMAC-fluorescein, see Scheme S3.
(34) Controls for Figure 3B can be found in Figure S17.
(35) Notably, compound 17 showed no significant toxicity to
cultured mammalian cells at concentrations up to 500 μM after 1 h of
treatment. By contrast, Cu(I) displays significant toxicity under these
conditions. See Figures S18 and S19.
’ REFERENCES
(1) Sletten, E. M.; Bertozzi, C. R. Angew. Chem., Int. Ed. 2009, 48,
6974.
(2) Saxon, E.; Bertozzi, C. R. Science 2000, 287, 2007.
(3) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596.
(4) Jewett, J. C.; Bertozzi, C. R. Chem. Soc. Rev. 2010, 39, 1272.
(5) Sletten, E. M.; Bertozzi, C. R. Acc. Chem. Res. 2011, 44, 666.
(6) (a) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. J. Am. Chem. Soc.
2004, 126, 15046. (b) Song, W.; Wang, Y.; Qu, J.; Madden, M. M.; Lin,
Q. Angew. Chem., Int. Ed. 2008, 47, 2832. (c) Sanders, B. C.; Friscourt, F.;
Ledin, P. A.; Mbua, N. E.; Arumugam, S.; Guo, J.; Boltje, T. J.; Popik,
V. V.; Boons, G.-J. J. Am. Chem. Soc. 2011, 133, 949.
(7) (a) Blackman, M. L.; Royzen, M.; Fox, J. M. J. Am. Chem. Soc.
2008, 130, 13518. (b) Devaraj, N. K.; Weissleder, R.; Hilderbrand, S. A.
Bioconjugate Chem. 2008, 19, 2297. (c) Pipkorn, R.; Waldeck, W.;
Didinger, B.; Koch, M.; Mueller, G.; Wiessler, M.; Braun, K. J. Pept.
Sci. 2009, 15, 235.
(36) Cultured mammalian cells tolerate diethyldithiocarbamate at
millimolar concentrations without apparent toxicity (Figures S20 and S21).
(8) (a) Lin, Y. A.; Chalker, J. M.; Floyd, N.; Bernardes, G. J. L.; Davis,
B. G. J. Am. Chem. Soc. 2008, 130, 9642. (b) Kodama, K.; Fukuzawa, S.;
17573
dx.doi.org/10.1021/ja2072934 |J. Am. Chem. Soc. 2011, 133, 17570–17573