Coordination of metal ions at the terpyridine units induced
quenching of the neighbouring fluorophores. Upon addition
of anions, coordination to the metal centres and a partial
recovery of the fluorescence was observed. The final response
of a certain TSNP–Q system to a particular anion is a delicate
balance between the binding strength of the metal ion with the
terpyridine and the affinity of the cation for the added anion.
This allows differential recognition of small inorganic anions
in a quencher displacement assay. Furthermore, regeneration
of the system is possible in a straightforward manner. The
facile and independent functionalisation of silica surfaces with
various chemical entities and the possible use of a number of
different coordination units and metal ions make this approach
highly appealing for the search for new chemosensors for anions.
Financial support from the Spanish Government (project
MAT2009-14564-C04-01), the Generalitat Valencia (project
PROMETEO/2009/016) and the Innovationsfonds (BAM/
Fig. 2 Principal component analysis (PCA) score plot for the anions as
indicated using TSNP–Q (Q = Fe3+, Hg2+, Cu2+, Ni2+ and Pb2+
)
ensembles. Data shown from three different trials and 1 : 5 TSNP–Q to
anion ratios. PC axes are calculated to lie along lines of diminishing levels
of variance in the data set.
Bundesministerium fur Wirtschaft und Technologie) is gratefully
¨
acknowledged.
poor change in fluorescence. Fluorescence lifetime studies of
the ternary systems revealed that upon addition of anions, the
lifetime features of the TSNP–Mn+ ensembles are gradually
turned into the features of TSNP, i.e., the major 2.2 ns
component of the sulforhodamine is recovered, pointing to
an actual displacement of the metal ion from the terpyridine units.
Notes and references
1 F. P. Schmidtchen and M. Berger, Chem. Rev., 1997, 97,
1609; P. D. Beer and P. A. Gale, Angew. Chem., Int. Ed., 2001,
40, 486.
2 T. Gunnlaudsson, M. Glynn, G. M. Tocci, P. E. Kruger and
F. M. Pfeffer, Coord. Chem. Rev., 2006, 250, 3094; S. L. Wiskur,
Whereas the TSNP–Q systems, with Q = Cu2+, Fe3+
,
Hg2+ or Ni2+, show a differential but no selective response
H. Aıt-Haddou, J. J. Lavigne and E. V. Anslyn, Acc. Chem. Res.,
¨
2001, 34, 963.
in the presence of small inorganic anions, TSNP–Pb2+
3 R. Martı
M. E. Moragues, R. Martı
Soc. Rev., 2011, 40, 2593.
4 The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials,
ed. K. Rurack and R. Martınez-Manez, Wiley, 2010.
5 A. B. Descalzo, R. Martınez-Manez, F. Sancenon, K. Hoffmann
and K. Rurack, Angew. Chem., Int. Ed., 2006, 45, 5924;
R. Martınez-Manez and F. Sancenon, Coord. Chem. Rev., 2006,
250, 3081.
6 R. Shenhar and V. M. Rotello, Acc. Chem. Res., 2003, 36, 549;
C. Beck, W. Hartl and R. Hempelmann, Angew. Chem., Int. Ed.,
1999, 38, 1297.
´
nez-Ma
´
nez and F. Sanceno
´
n, Chem. Rev., 2003, 103, 4419;
À
behaves different, i.e., only the addition of H2PO4 revives
´
nez-Ma
´
nez and F. Sancenon, Chem.
´
the sulforhodamine fluorescence whereas the other anions
remain largely passive (Fig. 3). Using this procedure, concen-
´
´
À
trations as low as 5 ppm of H2PO4 can be detected.
´
´
´
A final control experiment revealed that the addition of
anions to acetonitrile suspensions of TSNPs (in the absence of Q)
or SNPs did not result in changes of the dye’s fluorescence,
pointing out the importance of the quenching metal ion as the
mediator in the sensing paradigm. A further benefit of the
system is obvious from Scheme 1. Once an analytical reaction
has been performed and Q displaced, regeneration is easily
accomplished by addition of an appropriate metal ion salt with
a non-coordinating anion like perchlorate.
´
´
´
¨
7 M. J. W. Ludden, D. N. Reinhoudt and J. Huskens, Chem. Soc.
Rev., 2006, 35, 1122; P. M. Mendes, Chem. Soc. Rev., 2008,
37, 2512.
8 E. Rampazzo, E. Brasola, S. Marcuz, F. Mancin, P. Tecilla and
U. Tonellato, J. Mater. Chem., 2005, 15, 2687; M. Crego-Calama
and D. N. Reinhoudt, Adv. Mater., 2001, 13, 1171.
In summary, we have prepared a hybrid organic–inorganic
sensing ensemble by grafting fluorophores and receptors onto
the surface of silica nanoparticles and its use in anion recognition.
9 P. Calero, E. Aznar, J. M. Lloris, M. D. Marcos, R. Martı
Manez, J. V. Ros-Lis, J. Soto and F. Sancenon, Chem. Commun.,
2008, 1668; L. Basabe-Desmonts, J. Beld, R. S. Zimmerman,
J. Hernando, P. Mela, M. F. G. Parajo, N. F. van Hulst, A. van
´
nez-
´
´
´
den Berg, D. N. Reinhoudt and M. Crego-Calama, J. Am. Chem.
Soc., 2004, 126, 7293.
10 J. V. Ros-Lis, M. D. Marcos, R. Martı
J. Soto, Angew. Chem., Int. Ed., 2005, 44, 4405; J. V. Ros-Lis,
R. Casasus, M. Comes, C. Coll, M. D. Marcos, R. Martınez-
Manez, F. Sancenon, J. Soto, P. Amoros, J. El Haskouri, N. Garro
nez-Manez, K. Rurack and
´ ´
´
´
´
´
´
´
and K. Rurack, Chem.–Eur. J., 2008, 14, 8267.
11 K. Rurack, Spectrochim. Acta, Part A, 2001, 57, 2161.
12 Higher valent anions naturally induce similar changes as verified
with [(CH3)4N]2(SO4). However, because of the significantly lower
solubility of such salts in CH3CN, the interference is negligible.
13 B. Garcı
R. Martınez-Ma
Commun., 2004, 774; B. Garcı
F. Sancenon, J. Soto, K. Rurack, M. Spieles, E. Garcı
and L. Gil, Inorg. Chem., 2007, 46, 3123.
´
a-Acosta, X. Albiach-Martı
nez, K. Rurack, F. Sanceno
a-Acosta, R. Martı
´
,
E. Garcı
n and J. Soto, Chem.
nez-Manez,
a-Breijo
´
a, L. Gil,
´
´
´
´
´
´
´
´
Fig. 3 Emission intensity of acetonitrile suspensions of TSNP–Pb2+
in the presence of 5 equivalents (1.0 mmol) of the anions indicated.
14 A. P. Umali and E. V. Anslyn, Curr. Opin. Chem. Biol., 2010,
14, 685.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 10599–10601 10601