734
P. Kumar et al. / Ultrasonics Sonochemistry 19 (2012) 729–735
[13] L. Chai, Y. Zhao, Q. Sheng, Z.Q. Liu, Aromatization of Hantzsch 1,4-
dihydropyridines and 1,3,5-trisubstituted pyrazolines with HIO3 and I2O5 in
water, Tetrahedron Lett. 47 (2006) 9283–9285.
3.18. Diethyl 4-(3-(4-bromophenyl)-1-phenyl-1H-pyrazol-4-yl)-2,6-
dimethylpyridine-3,5-dicarboxylate 2q
[14] J.M. Chen, X.-M. Zeng, b-Cyclodextrin-catalyzed mild aromatization of
Hantzsch 1,4-dihydropyridines with o-iodoxybenzoic acid in water/acetone,
Synth. Commun. 39 (2009) 3521–3526.
[15] J.J.V. Eynde, F. Delfosse, A. Mayence, Y. Van Haverbeke, Old reagents, new
results: aromatization of Hantzsch 1,4-dihydropyridines with manganese
dioxide and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, Tetrahedron 51
(1995) 6511–6516.
[16] M. Filipan-Litvic, M. Litvic, V. Vinkovic, An efficient, metal-free, room
temperature aromatization of Hantzsch-1,4-dihydropyridines with urea–
hydrogen peroxide adduct, catalyzed by molecular iodine, Tetrahedron 64
(2008) 5649–5656.
IR (KBr): 3042, 2988, 1743, 1611, 1598, 1559, 1452, 1338, 1241,
1208, 1089, 1017, 867, 757, 732, 693 cmÀ1
.
1H NMR (CDCl3, d, ppm): 0.932 (t, J = 7.2 Hz, 6H), 2.612 (s, 6H),
3.909–4.098 (m, 4H), 7.310–7.371 (m, 2H); 7.470–7.522 (m, 5H),
7.745 (d, J = 7.7 Hz, 2H), 7.920 (s, 1H).
Anal. Calcd. for C28H26N3O4Br: C, 61.42; H, 4.75; N, 7.68. Found:
C, 61.55; H, 4.87; N, 7.86.
[17] B. Han, Z. Liu, Q. Liu, L. Yang, Z. Liu, W. Yu, An efficient aerobic oxidative
aromatization of Hantzsch 1,4-dihydropyridines and 1,3,5-trisubstituted
pyrazolines, Tetrahedron 62 (2006) 2492–2496.
[18] M.M. Hashemi, Y. Ahmadibeni, H. Ghafuri, Aromatization of Hantzsch 1,4-
dihydropyridines by hydrogen peroxide in the presence of cobalt(II) acetate,
Monatsh. Chem. 134 (2003) 107–110.
[19] M.M. Heravi, F.K. Behbahani, H.A. Oskooie, R.H. Shoar, Catalytic aromatization
of Hantzsch 1,4-dihydropyridines by ferric perchlorate in acetic acid,
Tetrahedron Lett. 46 (2005) 2775–2777.
[20] M.M. Heravi, F. Derikvand, S. Hassan-Pour, K. Bakhtiari, F.F. Bamoharram, H.A.
Oskooie, Oxidative aromatization of Hantzsch 1,4-dihydropyridines in the
presence of mixed-addenda vanadomolybdophosphate heteropolyacid
H6PMo9V3O40, Biol. Med. Chem. Lett. 17 (2007) 3305–3309.
3.19. Diethyl 4-(3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl)-2,6-
dimethylpyridine-3,5-dicarboxylate 2r
IR(KBr): 3055, 2989, 1747, 1620, 1597, 1461, 1322, 1087, 1002,
952, 850, 836, 698 cmÀ1
.
1H NMR (CDCl3, d, ppm): 0.935 (t, J = 7.2 Hz, 6H), 2.618 (s, 6H),
3.898–4.118 (m, 4H), 7.310–7.370 (m, 2H); 7.487–7.513 (m, 5H),
7.746 (d, J = 7.8 Hz, 2H), 7.923 (s, 1H).
Anal. Calcd. for C28H26ClN3O4: C, 66.73; H, 5.20; N, 8.34. Found:
C, 61.66; H, 5.29; N, 8.26.
[21] J.S. Yadav, B.V.S. Reddy, A.K. Basak, G. Baishya, A. Venkat Narsaiah,
Iodoxybenzoic acid (IBX): an efficient and novel oxidizing agent for the
aromatization of 1,4-dihydropyridines, Synthesis 3 (2006) 451–454.
[22] B. Khadilkar, S. Borkar, Silica gel-supported ferric nitrate:
oxidizing reagent, Synth. Commun. 28 (1998) 207–212.
a convenient
3.20. Diethyl 2,6-dimethylpyridine-3,5-dicarboxylate 3
[23] P. Kumar, A. Kumar, An expeditious oxidative aromatization of Hantzsch 1,4-
dihydropyridines to pyridines using cetyltrimethylammonium
IR (KBr): 2988, 1727, 1597, 1512, 1302, 1246, 1122, 1023, 776
cmÀ1
.
peroxodisulfate: a phase transferring oxidant, Bull. Korean Chem. Soc. 31
(2010) 2299.
1H NMR (CDCl3, d, ppm): d = 1.31 (t, J = 7.12 Hz, 6H, CH3), 2.75
(s, 6H, CH3), 4.29 (q, J = 7.12 Hz, 4H, OCH3).
[24] M. Litvic, I. Cepanec, M. Filipan, K. Kos, A. Bartolincic, V. Druskovic, M.M. Tibi,
V. Vinkovic, Mild, selective, and high-yield oxidation of Hantzsch 1,4-
dihydropyridines with lead(IV) acetate, Heterocycles 65 (2005) 23.
[25] D. Liu, J. Gui, C. Wang, F. Lu, Y. Yang, Z. Sun, Oxidative aromatization of
Hantzsch 1,4-dihydropyridines catalyzed by ferric perchlorate in ionic liquids
with air, Synth. Commun. 40 (2010) 1004–1008.
Anal. Calcd. for C13H17NO4:C, 62.14; H, 6.82; N, 5.57. Found: C,
62.23; H, 7.01; N, 5.45.
[26] Z. Liu, W. Yu, L. Yang, Z.-L. Liu, A novel oxidation-ring contraction of Hantzsch
1,4-dihydropyridines to polysubstituted furans, Tetrahedron Lett. 48 (2007)
5321.
Acknowledgment
[27] H.R. Memarian, M. Abdoli-Senejani, Ultrasound-assisted photochemical
oxidation of unsymmetrically substituted 1,4-dihydropyridines, Ultrason.
Sonochem. 15 (2008) 110.
The author (P. Kumar) is thankful to authorities of BRL Mokhra
for providing chemicals and ultrasonicator.
[28] H.R. Memarian, M. Abdoli-Senejani, S. Tangestaninejad, Photosensitized
oxidation of unsymmetrical 1,4-dihydropyridines, J. Iran Chem. Soc. 3 (2006)
285.
[29] M. Moghadam, M. Nasr-Esfahani, S. Tangestaninejad, V. Mirkhani, Mild and
efficient oxidation of Hantzsch 1,4-dihydropyridines with sodium periodate
catalyzed by a new polystyrene-bound Mn(TPP)Cl, Bioorg. Med. Chem. Lett. 16
(2006) 2026.
[30] M. Nasr-Esfahani, M. Moghadam, S. Tangestaninejad, V. Mirkhani, A.R.
Momeni, Rapid and efficient oxidation of Hantzsch 1,4-dihydropyridines
with sodium periodate catalyzed by manganese(III) Schiff base complexes,
Bioorg. Med. Chem. 14 (2006) 2720.
[31] J.R. Pfister, Rapid, high-yield oxidation of Hantzsch-type 1,4-dihydropyridines
with ceric ammonium nitrate, Synthesis (1990) 689–690.
[32] A. Saini, S. Kumar, J.S. Sandhu, New strategy for the oxidation of Hantzsch 1,4-
dihydropyridines and dihydropyrido[2,3-d]pyrimidines catalyzed by DMSO
under aerobic conditions, Synth. Commun. 37 (2007) 2317–2324.
[33] S.D. Sharma, P. Hazarika, D. Konwar, A simple, green, and one-pot, four-
component synthesis of 1,4-dihydropyridines and their aromatization, Catal.
Commun. 9 (2008) 709–714.
[34] F. Tamaddon, Z. Razmi, Oxidation of 1,4-dihydropyrimidines and 3,4-
dihydropyrimidin-2(1H)-ones to substituted pyridines and pyrimidinones
using Ca(OCl)2 in aqueous media, Synth. Commun. 41 (2011) 485–492.
[35] J. Vanden Eynde, R. Dorazio, Y. Van Haverbeke, Potassium permanganate, a
versatile reagent for the aromatization of Hantzsch 1,4-dihydropyridines,
Tetrahedron 50 (1994) 2479–2484.
[36] R.S. Varma, D. Kumar, Manganese triacetate-mediated oxidation of Hantzsch
1,4-dihydropyridines to pyridines, Tetrahedron Lett. 40 (1999) 21–24.
[37] J.J. Xia, G.W. Wang, One-pot synthesis and aromatization of 1,4-
dihydropyridines in refluxing water, Synthesis (2005) 2379–2383.
[38] B. Zeynizadeh, K.A. Dilmaghani, M. Mirzaei, Mild and convenient method for
aromatization of Hantzsch esters of 1,4-dihydropyridines with Ag2O, Acta
Chim. Slov. 54 (2007) 366.
[39] N.N. Karade, S.V. Gampawar, J.M. Kondre, S.V. Shinde, An efficient combination
of Dess–Martin periodinane with molecular iodine or KBr for the facile oxidative
aromatization of Hantzsch 1,4-dihydropyridines, ARKIVOC xii (2008) 9–16.
[40] D.P. Cheng, Z.C. Chen, Hypervalent iodine in synthesis 76. An efficient
oxidation of 1,4-dihydropyridines to pyridines using iodobenzene diacetate,
Synth. Commun. 32 (5) (2002) 793–798.
References
[1] D.M. Stout, A.I. Meyers, Recent advances in the chemistry of dihydropyridines,
Chem. Rev. 82 (1982) 323.
[2] A. Hilgeroth, Dimeric 4-aryl-1,4-dihydropyridines: development of a third
class of nonpeptidic HIV-1 protease inhibitors, Min. Rev. Med. Chem. 2 (2002)
235–247.
[3] M. Suarez, Y. Verdecia, B. Illescas, R. Matinenz-Alvarez, A. Alvarez, E. Ochoa, C.
Seoane, N. Kayali, N. Martin, Synthesis and study of novel fulleropyrrolidines
bearing biologically active 1,4-dihydropyridines, Tetrahedron 59 (2003) 9179–
9186.
[4] T. Chennot, U. Eisner, A new synthesis of 1,4-dihydropyridines, J. Chem. Soc.
Perkin Trans. 1 (1975) 926–929.
[5] G.T. Babcock, M. Wikstrom, Oxygen activation and the conservation of energy
in cell respiration, Nature 356 (1992) 301.
[6] F.P. Guengerich, M.V. Martin, P.H. Beaune, P. Kremers, T. Wolf, D.J. Waxman,
Characterization of rat and human liver microsomal cytochrome P-450 forms
involved in nifedipine oxidation, a prototype for genetic polymorphism in
oxidative drug metabolism, J. Biol. Chem. 261 (1986) 5051–5060.
[7] M.M. Cox, D.L. Nelson, Lehninger Principles of Biochemistry, Oxford, 2005.
[8] U. Eisner, J. Kuthan, The chemistry of dihydropyridines, Chem. Rev. 72 (1972)
1.
[9] B. Bulbul, G.S. Ozturk, M. Vural, R. Simsek, Y. Sarioqlu, A. Linden, M. Ulqen, C.
Safak, Condensed 1,4-dihydropyridines with various esters and their calcium
channel antagonist activities, Eur. J. Med. Chem. 44 (2009) 2052–2058.
[10] Z.A. Moshtaghi, H.S. Baradaran, Montmorillonite K10 clay: an efficient catalyst
for Hantzsch synthesis of 1,4-dihydropyridine derivatives, Synth. Commun. 38
(2008) 290–296.
[11] H. Adibia, A.R. Hajipour, A convenient and efficient protocol for oxidative
aromatization of Hantzsch 1,4-dihydropyridines using benzyltriphenyl
phosphonium peroxymonosulfate under almost neutral reaction conditions,
Biol. Med. Chem. Lett. 17 (2007) 1008–1012.
[12] M. Anniyappan, D. Muralidharan, P.T. Perumal, A novel application of the
oxidizing properties of urea nitrate and peroxydisulfate–cobalt(II):
aromatization of NAD(P)H model Hantzsch 1,4-dihydropyridines, Tetrahedron
58 (2002) 5069–5073.