[18F]FB-DBCO-coupled triazole-[18F]7. Condition A: Radio-
chemical yield: 98%; Condition B: Radiochemical yield: 97%;
Condition C: Radiochemical yield: 90%, tR = 11.8–12.5 min for
both isomers.
the supernatant following a second centrifugation step (5 min
at 13,000 rpm). TLC samples from the plasma fraction were
developed and analyzed using radio-TLC as described above.
[18F]FB-DBCO-coupled triazole-[18F]8. Condition A: Radio-
chemical yield: 85%; Condition B: Radiochemical yield: 69%;
Condition C: Radiochemical yield: 75%, tR = 11.9–12.5 min for
both isomers.
Acknowledgements
The authors would like to thank John Wilson, David Clen-
dening and Jayden Sader from the Edmonton PET Center for
radionuclide production and excellent technical support. F.W.
thanks the Dianne and Irving Kipnes Foundation and the Natural
Sciences and Engineering Research Council of Canada (NSERC)
for supporting this work.
[18F]FB-DBCO-coupled triazole-[18F]9. Condition A: Radio-
chemical yield: 82%, tR = 14.9–15.2 min.
[18F]FB-DBCO-coupled triazole-[18F]10. Condition D: Radio-
chemical yield: 69%, tR = 13.1–13.4 min.
References
[18F]FB-DBCO-coupled triazole-[18F]11. Condition E: Radio-
chemical yield: 75%, tR = 18.3–18.6.
1 (a) M. E. Phelps, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 9226; (b) M.
E. Phelps, J. Nucl. Med., 2000, 41, 661; (c) T. F. Massed and S. S
Gambhir, Genes Dev., 2003, 17, 545; (d) A. M. J. Paans, A. van Waarde,
P. H. Elsinga, A. T. M. Willemsen and W. Vaalburg, Methods, 2002, 27,
195; (e) T. J. McCarthy, S. W. Schwarz and M. J. Welch, J. Chem. Educ.,
1994, 71, 830; (f) J. Czernin and M. J. Phelps, Annu. Rev. Med., 2002,
53, 89; (g) J. S. Fowler and A. P. Wolf, Acc. Chem. Res., 1997, 30, 181.
2 (a) P. H. Elsinga;, Methods, 2002, 27, 208; (b) V. W. Pike, Drug Inf. J.,
1997, 31, 997; (c) B. Langstro¨m, T. Kihlberg, M. Bergstro¨m, G. Antoni,
M. Bjo¨rkman, B. H. Forngren, P. Hartvig, K. Markides, U. Yngve and
Small animal PET in normal mice
All animal experiments were carried out in accordance with
guidelines of the Canadian Council on Animal Care (CCAC)
and were approved by the local animal care committee of the
Cross Cancer Institute. Positron emission tomography (PET)
experiments were performed using normal BALB/c mice. The
mice were not fasted prior to imaging experiments. The animals
were anesthetized through inhalation of isoflurane in 40% oxy-
gen/60% nitrogen (gas flow, 1 L min-1) and body temperature
¨
M. Ogren, Acta Chem. Scand., 1999, 53, 651; (d) M. C. Lasne, C.
Perrio, J. Rouden, L. Barre´, D. Roeda, F. Dolle and C. Crouzel, Top.
Curr. Chem., 2002, 222, 201.
3 (a) P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel,
B. Voit, J. Pyun, J. M. J. Frechet, K. B. Sharpless and V. V. Fokin,
Angew. Chem., Int. Ed., 2004, 43, 3928; (b) M. Malkoch, R. J. Thibault,
E. Drockenmuller, M. Messerschmidt, B. Voit, T. P. Russell and C. J.
Hawker, J. Am. Chem. Soc., 2005, 127, 14942; (c) Q. Wang, T. R. Chan,
R. Hilgraf, V. V. Fokin, K. B. Sharpless and M. G. Finn, J. Am. Chem.
Soc., 2003, 125, 3192; (d) P. M. Gramlich, C. T. Wirges, A. Manetto
and T. Carell, Angew. Chem., Int. Ed., 2008, 47, 8350; (e) S. T. Laughlin
and C. R. Bertozzi, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 12; (f) H.
C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed., 2001,
40, 2004; (g) M. Kohn and R. Breinbauer, Angew. Chem., Int. Ed., 2004,
43, 3106; (h) I. Chen and A. Y. Ting, Curr. Opin. Biotechnol., 2005, 16,
35; (i) J. M. Antos and M. B. Francis, Curr. Opin. Chem. Biol., 2006,
10, 253; (j) M. E. Hahn and T. W. Muir, Trends Biochem. Sci., 2005,
30, 26; (k) M. B. Soellner, B. L. Nilsson and R. T. Raines, J. Am. Chem.
Soc., 2006, 128, 8820; (l) F. L. Lin, H. M. Hoyt, H. van Halbeek, R.
G. Bergman and C. R. Bertozzi, J. Am. Chem. Soc., 2005, 127, 2686;
(m) R. V. Kolakowski, N. Shangguan, R. R. Sauers and L. J. Williams,
J. Am. Chem. Soc., 2006, 128, 5695; (n) J. A. Johnson, M. G. Finn, J.
T. Koberstein and N. J. Turro, Macromol. Rapid Commun., 2008, 29,
1052–1072 .
◦
was kept constant at 37 C for the entire experiment. Mice were
positioned and immobilized in the prone position with their
medial axis parallel to the axial axis of the scanner and their
thorax, abdomen and hind legs (organs of interest: heart, kidneys,
bladder,liver) in the centre of the field of view of the microPETꢀ
R
R4 scanner (Siemens Preclinical Solutions, Knoxville, TN, USA).
A transmission scan for attenuation correction was not acquired.
4–6 MBq of [18F]FB-DBCO in 100–150 mL saline containing 10%
of EtOH was injected through a needle catheter into the tail vein.
Data acquisition continued for 60 min in 3D list mode. The frames
were reconstructed using MAP. The pixel size was 0.085 by 0.085
by 0.12 cm and the resolution in the centre field of view was
1.8 mm. No correction for partial volume effects was performed.
The image files were further processed using the ROVER v2.0.21
software (ABX GmbH, Radeberg, Germany). Masks for defining
3D regions of interest (ROI) were set and the ROI’s were defined
by thresholding. ROI time-activity curves (TAC) were generated
for subsequent data analysis. Standardized uptake values (SUV =
(activity/mL tissue)/(injected activity/body weight), mL g-1) were
calculated for each ROI.
4 (a) C. Wa¨ngler, R. Schirrmacher, P. Bartenstein and B. Wa¨ngler, Curr.
Med. Chem., 2010, 17, 1092; (b) K. Nwe and M. W. Brechbiel, Cancer
Biother. Radiopharm., 2009, 24, 289; (c) C. Mamat, T. Ramenda and F.
Wuest, Mini-Rev. Org. Chem., 2009, 6, 21.
5 (a) J. A. Prescher and C. R. Bertozzi, Nat. Chem. Biol., 2005, 1, 13;
(b) M. F. Debets, S. S. van Berkel, S. Schoffelen, F. P. Rutjes, J. C.
van Hest and F. L. van Delft, Chem. Commun., 2010, 46, 97; (c) M. F.
Debets, C. W. J. van der Doelen, F. P. J. T. Rutjes and F. L. van Delft,
ChemBioChem, 2010, 11, 1168; (d) J. M. Baskin and C. R. Bertozzi,
QSAR Comb. Sci., 2007, 26, 1211; (e) N. K. Devaraj, R. Upadhyay,
J. B. Haun, S. A. Hilderbrand and R. Weissleder, Angew. Chem., Int.
Ed., 2009, 48, 7013; (f) X. H. Ning, J. Guo, M. A. Wolfert and G.-J.
Boons, Angew. Chem., Int. Ed., 2008, 47, 2253; (g) N. K. Devaraj and R.
Weissleder, Acc. Chem. Res., 2011 in press; (h) R. Rossin, P. R. Verkerk,
S. M. van den Bosch, R. C. Vulders, I. Verel, J. Lub and M. S. Robillard,
Angew. Chem. Int. Ed. Engl., 2010, 46, 3375; (i) M. F. Debets, C. W.
van der Doelen, F. P. Rutjes and F. L. van Delft, ChemBioChem, 2010,
11, 1168; (j) J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P.
V. Chang, L. A. Miller, A. Lo, J. A. Codelli and C. R. Bertozzi, Proc.
Natl. Acad. Sci. U. S. A., 2007, 104, 16793.
Metabolite analysis
15 MBq [18F]FB-DBCO in 100 to 150 mL saline containing 10%
of EtOH was injected as a bolus through a catheter into the tail
vein of isoflurane anesthetized BALB/c mice. Before radiotracer
injection, mice were heparinized by subcutaneous injection of
50 mL heparin (1000 I.U.) and kept under anesthesia during
the course of the experiment. At selected time points of 5 and
60 min, the animal was sacrificed and a whole blood sample
(approximately 500 mL) was collected. Blood cells were separated
by immediate centrifugation (5 min at 13,000 rpm). Proteins within
the sample were precipitated by adding ~800 mL methanol to
6 (a) J. Marik and J. L. Sutcliffe, Tetrahedron Lett., 2006, 47, 6681; (b) T.
L. Ross, M. Honer, P. Y. Lam PY, T. L. Mindt, V. Groehn, R. Schibli,
7398 | Org. Biomol. Chem., 2011, 9, 7393–7399
This journal is
The Royal Society of Chemistry 2011
©