J.-P. Leclerc et al. / Bioorg. Med. Chem. Lett. 21 (2011) 6505–6509
6509
Yamada, M.; Watanabe, N.; Takagi, T.; Wakimoto, S.; Okuyama, R.; Konishi, M.;
Kurikawa, N.; Kono, K.; Osumi, J. Bioorg. Med. Chem. Lett. 2009, 19, 4159; (e)
Ramtohul, Y. K.; Black, C.; Chan, C.-C.; Crane, S.; Guay, J.; Guiral, S.; Huang, Z.;
Oballa, R.; Xu, L.-J.; Zhang, L.; Li, C. S. Bioorg. Med. Chem. Lett. 2010, 12, 23; (f)
Powell, D. A.; Ramtohul, Y. K.; Lebrun, M.-E.; Oballa, R.; Falgueyret, J.-P.; Guiral,
S.; Huang, Z.; Skorey, K.; Tawa, P.; Zhang, L. Bioorg. Med. Chem. Lett. 2010, 20,
6366; (g) ACS 240th, Boston, 2010.; (h) Isabel, E.; Powell, D. A.; Black, C.; Chan,
C.-C.; Crane, S.; Gordon, R.; Guay, J.; Guiral, S.; Huang, Z.; Robichaud, J.; Skorey,
K.; Tawa, P.; Xu, L.; Zhang, L.; Oballa, R. Bioorg. Med. Chem. Lett. 2011, 21, 479;
(i) Atkinson, K. A.; Beretta, E. E.; Brown, J. A.; Castrodad, M.; Chen, Y.; Cosgrove,
J. M.; Du, P.; Litchfield, J.; Makowski, M.; Martin, K.; McLellan, T. J.; Neagu, C.;
Perry, D. A.; Piotrowski, D. W.; Steppan, C. M.; Trilles, R. Bioorg. Med. Chem. Lett.
2011, 21, 1621.
Tissue distribution of 5 and 43 in Mice
P.O. 10 mg/kg in 0.5% Methocel, 6 hours after dosage
0.4x
6.6
6
Systemically-distributed
Liver-targeted SCD inhibitor
SCD inhibitor
O
HO
N
N
O
Br
Br
N
N
5.4
4.8
4.2
3.6
3
N
Br
Br
N
H2
N
N
N
N
O
Br
N
N
Br
5
43
2.4
1.8
1.2
0.6
0
9. (a) Five initial applications from Xenon (WO2005/011653 to WO 2005/011657)
were published on February 10, 2005. WO2008/074835 and WO2009/106991
were also published in 2008 and 2009 respectively. Representative one: Abreo,
M.; Chafeev, M.; Chakka, N.; Chowdhury, S.; Fu, J.-M.; Gschwend, H. W.;
Holladay, M. W.; Hou, D.; Kamboj, R.; Kodumuru, V.; Li, W.; Liu, S.; Raina, V.;
Sun, S.; Sun, S.; Sviridov, S.; Winther, M. D.; Zhang, Z. WO2005/011655.; (b)
Xenon/Novartis patent: Dales, N.; Zhang, Z. WO2008/024390.; (c) Three
patents from GSK in 2009: WO2009/016216, WO2009/060053 and WO2009/
060054. Representative one: Bouillot, A. M. J.; Laroze, A.; Trottet, L. WO2009/
060053.
100x
Plasma
Liver
Harderian glands
Figure 3. From systemic lead to liver-targeted inhibitor.
10. Our approach was based on a SPA technology and recombinant FLAG tag
human SCD-1. In the first screen of the sample collection, a binding assay was
used to identify novel chemical structures, as well as the design of selective
and potent human SCD-1 inhibitors. Over 1.6 Â 106 compounds were tested
mLPD. It is likely that compounds 42 and 43 are too shifted in the
HepG2 assay (IC50’s >100,000 nM and 37,749 nM, respectively).
In summary, during an uHTS campaign we identified a structur-
ally distinct class of potent SCD inhibitors. To avoid potential eye
and skin adverse events, we converted the systemically distributed
triazole-based compound 5 into liver-targeting inhibitors by the
incorporation of a tetrazole acetic acid moiety and a pyridine linker
(37). Further modifications of the middle ring linker allowed us to
modulate in vitro (increased potency) and in vivo (increased liver
exposure) properties and generated isoxazole 43, a potent liver-
selective SCD inhibitor (Fig. 3). Unfortunately, despite the good li-
ver-selectivity and drug exposure, no significant in vivo inhibition
was observed. Further studies are underway to identify more effi-
cient and potent liver-targeting inhibitors of SCD in the mLPD.
and 12109 were found to give >35% inhibition at 9 lM. After confirmation of
the potency (triplicate of the binding assay), compounds were filtered,
clustered and then tested in a rat microsomal assay using a 3 point titration.
Finally, the best compounds were retested in the same rat assay using a 10
point titration curve. For more details see Skorey, K. and co-worker, J. Biomol.
Screen. 2011, 16, 506.
11. For rat microsomal assay conditions, see: Li, C. S.; Ramtohul, Y.; Huang, Z.;
Lachance, N. WO2006/130986.
12. Oballa, R. M.; Belair, L.; Black, C.; Bleasby, K.; Chan, C. C.; Desroches, C.; Du, X.;
Gordon, R.; Guay, J.; Guiral, S.; Hafey, M. J.; Hamelin, E.; Huang, Z.; Kennedy, B.;
Lachance, N.; Landry, F.; Li, C. S.; Mancini, J.; Normandin, D.; Pocai, A.; Powell,
D.; Ramtohul, Y.; Skorey, K.; Sturkenboom, W.; Styhler, A.; Waddleton, D.;
Wang, H.; Wong, S.; Xu, L.; Zhang, L. J. Med. Chem. 2011, 54, 5082.
13. For a review on OATP transporters, see: Niemi, M. Pharmacogenomics 2007, 8,
787.
14. For detailed experimental procedures, see: Leclerc, J.-P.; Li, C. S.; Ramtohul, Y.
K. WO 2010/025553.
Acknowledgments
15. For detailed experimental procedures on the synthesis of azide 10, see:
Strassburg, R. W.; Gregg, R. A.; Walling, C. J. Am. Chem. Soc. 1947, 69, 2141.
16. N2-Tetrazole acetic acid substitution showed reduced activity over the N3-
tetrazole acetic acid regioisomer. The proper regiochemistry was confirmed by
evaluation of the structures through NMR experiments: gHMBC, 15N gHMBC
and 1D NOESY.
The authors thank Dan Sørensen for NMR spectroscopic
assistance on gHMBC, 15N gHMBC and 1D NOESY experiments
and Nicolas Lachance for his advice and suggestions.
17. For detailed experimental procedures on the synthesis of azides 11 and 12, see:
(a) Blankespoor, L. R.; DeVries, T.; Hansen, E.; Kallemeyn, M. J.; Klooster, M. A.;
Mulder, A. J.; Smart, P. R.; Vander Griend, A. D. J. Org. Chem. 2002, 67, 2677; (b)
Katzenellenbogen, A. J.; Robertson, D. W. J. Org. Chem. 1982, 47, 2387.
18. Unpublished results.
19. For detailed experimental procedures on acylchloride syntheses, see: (a)
Thompson, A.; Regourd, J.; Al-Sheikh Ali, A. J. Med. Chem. 2007, 50, 1528; (b)
Shiraishi, M.; Kato, K.; Terao, S.; Ashida, Y.; Terashita, Z.-I.; Kito, G. J. Med. Chem.
1989, 32, 2214.
References and notes
1. (a) Dobrzyn, P.; Dobrzyn, A. Expert Opin. Ther. Patents 2010, 20, 849; (b) Liu, G.
Expert Opin. Ther. Patents 2009, 19, 1169; (c) Kopelman, P. G. Nature 2000, 404,
635.
2. Enoch, H. G.; Catala, A.; Strittmatter, P. J. Biol. Chem. 1976, 251, 5095.
3. Ntambi, J. M. Prog. Lipid Res. 1995, 34, 139.
4. (a) Jiang, G.; Li, Z.; Liu, F.; Ellsworth, K.; Dallas-Yang, Q.; Wu, M.; Ronan, J.; Esau,
C.; Murphy, C.; Szalkowski, D.; Bergeron, R.; Doebber, T.; Zhang, B. B. J. Clin.
Invest. 2005, 115, 1030; (b) Miyazaki, M.; Flowers, M. T.; Sampath, H.; Chu, K.;
Otzelberger, C.; Liu, X.; Ntambi, J. M. Cell Metab. 2007, 6, 484; (c) Savransky, V.;
Jun, J.; Li, J.; Nanayakkara, A.; Fonti, S.; Moser, A. B.; Steele, K. E.; Schweitzer, M.
A.; Patil, S. P.; Bhanot, S.; Schwartz, A. R.; Polotsky, V. Y. Circ. Res. 2008, 103,
1173.
5. (a) Dobrzyn, A.; Ntambi, J. M. Prostaglandins Leukot. Essent. Fatty Acids 2005, 73,
35; (b) Dobrzyn, A.; Ntambi, J. M. Obes. Rev. 2005, 6, 169.
6. Li, C. S.; Belair, L.; Guay, J.; Murgasva, R.; Sturkenboom, W.; Ramtohul, Y. K.;
Zhang, L.; Huang, Z. Bioorg. Med. Chem. Lett. 2009, 19, 5214.
20. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed.
2002, 41, 2596.
21. Intermediate 30 was obtained from the reaction of azide 9 with ethynyltri-N-
butyltin in benzene at 80 °C for 5 h.
22. Zhang, L.; Ramtohul, Y.; Gagné, S.; Styhler, A.; Guay, J.; Huang, Z. J. Biomol.
Screen. 2010, 15, 169.
23. Active OATPs are present in the cells of the rat hepatocyte assay, as opposed to
the HepG2 whole cells which lack these active transporters. When compared
side by side, those two assays give a good indication of potential active drug
transport in the liver as compared to passive cell diffusion. As such, a liver-
targeted SCD inhibitor transported by the OATPs will have a more potent
hepatocyte IC50 values over HepG2 inhibition. Therefore, this can be use to
evaluate the potential liver-targeted nature of a compound before performing
pharmacokinetic studies.
7. Leger, S.; Black, C.; Deschenes, D.; Dolman, S.; Falgueyret, J.-P.; Gagnon, M.;
Guiral, S.; Huang, Z.; Guay, J.; Leblanc, Y.; Li, C.-S.; Masse, F.; Oballa, R.; Zhang, L.
Bioorg. Med. Chem. Lett. 2010, 20, 499.
8. (a) Xin, Z.; Zhao, H.; Serby, M. D.; Liu, B.; Liu, M.; Szczepankiewicz, B. G.; Nelson,
L. T.; Smith, H. T.; Suhar, T. S.; Janis, R. S.; Cao, N.; Camp, H. S.; Collins, C. A.;
Sham, H. L.; Surowy, T. K.; Liu, G. Bioorg. Med. Chem. Lett. 2008, 18, 4298; (b)
Winther, M. D. 2nd Annual Drug Development for Diabetes and Obesity,
London, UK, Jan 17–18, 2008.; (c) Koltun, D. O.; Vasilevich, N. I.; Parkhill, E. Q.;
Glushkov, A. I.; Zilbershtein, T. M.; Mayboroda, E. I.; Boze, M. A.; Cole, A. G.;
Henderson, I.; Zautke, N. A.; Brunn, S. A.; Chu, N.; Hao, J.; Mollova, N.; Leung, K.;
Chisholm, J. W.; Zablocki, J. Bioorg. Med. Chem. Lett. 2009, 19, 3050; (d) Uto, Y.;
Ogata, T.; Kiyotsuka, Y.; Miyazawa, Y.; Ueno, Y.; Kurata, H.; Deguchi, T.;
24. Mouse liver pharmacodynamic model (mLPD) is expressed in percentage (%)
inhibition and is used to assess the in vivo potency. In the mLPD experiment,
mice (male C57BL6) were fed on a high carbohydrate diet and the SCD activity
was indexed 3 h post oral dose of SCD inhibitors by following the conversion of
intravenously administered [1-14C]-stearic acid tracer to the SCD-derived
[1-14C]-oleic acid in liver lipids. The percentage (%) of inhibition of an SCD
inhibitor is calculated from the liver SCD activity index (ratio of 14C-oleic
acid/14C-stearic acid) from drug treated animals compared to a vehicle group.