134
K.M. Al-Ahmary et al. / Journal of Molecular Liquids 162 (2011) 129–134
[14] R. Mandal, S.C. Lahiri, J. Indian Chem. Soc. 76 (1999) 347.
[15] S.M. Andrade, S.M.B. Costa, R. Pansu, J. Colloid Interface Sci. 226 (2000) 260.
[16] K. Takahasi, K. Horino, T. Komura, K. Murata, Bull. Chem. Soc. Jpn. 66 (1993) 733.
[17] A. Eychmuller, A.I. Rogach, Pure Appl. Chem. 72 (2000) 179.
[18] H. Salem, J. Pharm. Biomed. Anal. 29 (2002) 527.
vibrational bands of the HBCT-complex were found at 838 and
761 cm−1 compared with 839 and 782 cm−1 for CHA. Furthermore,
the ring vibrational bands at 576, 555, 513 cm−1 were further
confirmed the formation of a bifurcated hydrogen bond in the HBCT-
complex (2AP-CHA) [55,56].
[19] A.M. Slifkin, Charge Transfer Interaction of Biomolecules, Academic Press, New
York, 1971.
[20] L.B. Kiev, Molecular Orbital Theory in Drug Research, Academic Press, New York,
1971.
[21] J. Melgo, M. Lemeignan, F. Peradejordi, P. Lechat, J. Pharmacol. (Paris) 16 (Suppl.
II) (1985) 109.
[22] C. Carlsoom, I. Rosen, E. Nilsson, Acta Anaesthesiol. Scand. 27 (1993) 87.
[23] J.I. Segal, B.S. Brunnemann, Pharmacotherapy 17 (1997) 415.
[24] A.G. Amr, A.M. Mohamed, S.F. Mohamed, N.A. Abdel-Hafez, A. Hammam, Bioorg.
Med. Chem. 14 (2006) 5488.
[25] I.O. Zhuravel, S.M. Kovalenko, A.V. Ivachtchenko, K.V. Balakin, V. Kazmirchuk,
Bioorg. Med. Chem. Lett. 5 (2005) 5483.
4. Conclusion
1- 2AP reacts instantly with CHA to form HBCT-complex in different
polar solvent.
2- Job's method of continuous variation and photometric titration
methods confirmed the formation of 1:1 HBCT-complex.
3- KCT of HBCT-complex in different polar solvents were estimated
where KCT recorded large value in methanol compared with
ethanol and acetonitrile.
[26] K. Parfitt, S.C. Sweetman, P.S. Blake, A.V. Parsons, Martindale, The Extra
Pharmacopoeia, 32nd ed, Phamaceutical Press, London, 1999, p. 80, 88.
[27] A. Goel, V.J. Ram, Tetrahedron 65 (2009) 7865.
4- The results were interpreted based on Kamlet–Taft solvent
parameters.
5- The solid HBCT-complex was isolated and characterized using
elemental analysis and infrared spectroscopy.
6- The formed HBCT-complex included bifurcated hydrogen bonded
proton transfer between OH of CHA and both the amino and ring
nitrogen of 2AP.
[28] N.A. Al-Hashimy, Y.A. Hussein, Spectrochim. Acta A 75 (2010) 198.
[29] M.M. Habeeb, A.S. Al-Attas, M.T. Basha, J. Mol. Liq. 150 (2009) 56.
[30] M.M. Habeeb, R.M. Alghanmi, JCED 55 (2010) 930.
[31] K.M. Al-Ahmary, M.M. Habeeb, E.A. Al-Solmy, J. Solution Chem. 39 (2010) 1264.
[32] A.S. Al-Attas, M.M. Habeeb, D.S. Al-Raimi, J. Mol. Liq. 148 (2009) 58.
[33] A.S. Al-Attas, M.M. Habeeb, D.S. Al-Raimi, J. Mol. Struct. 928 (2009) 158.
[34] K.M. Al-Ahmary, M.M. Habeeb, E.A. Al-Solmy, J. Mol. Liq. 158 (2011) 161.
[35] M.E. Abdel-Hamid, M. Abdel-Salam, M.S. Mahrous, M.M. Abdel-Khalek, Talanta 32
(1985) 1000.
[36] P. Job, Advanced Physicochemical Experimental: London, , 1964.
[37] D.A. Skoog, Principal of Instrumental Analysis, 3rd ed. Sunder College Publisher,
New York, 1985.
[38] H. Benesi, J. Hildebrand, J. Am. Chem. Soc. 71 (1949) 2703.
[39] N.S. Moyon, A.K. Chandra, S. Mitra, J. Phys. Chem. A114 (2010) 60.
[40] K.A. Connors, Chemical Kinetics, The Study of Reaction Rate in Solution, VCH
Publishers, Inc, 1990.
[41] A.B.P. Leve, Inorganic Electronic Spectroscopy, second ed., Elsevier, Amsterdam,
1985, p. 161.
[42] H. Tsubomura, R. Lang, J. Am. Chem. Soc. 86 (1964) 3930.
[43] R. Rathone, S.V. Linderman, J.K. Kochi, J. Am. Chem. Soc. 119 (1997) 9393.
[44] W.B. Person, J. Am. Chem. Soc. 84 (1962) 536.
7- Based on the simple composition of the formed HBCT-complex and
its instantaneous production, a rapid and accurate spectrophoto-
metric method for analysis of 2AP was suggested.
8- Beer's law was obeyed in the concentration range 2–94 μg ml−1
.
9- The recovery percentages ranged from 99.71 to 100.94 with
relative standard deviation ranged from 1.12 to 1.40 confirming
high accuracy and precision of the proposed method.
References
[45] H.M. McConnel, J.J. Ham, J.R. Platt, J. Chem. Phys. 21 (1964) 66.
[46] G. Briegleb, Z. Angew Chem. 76 (1964) 326.
[47] D.C. Wheat, Hand Book of Chemistry and Physics, fifteenth ed., CRC, 1969–1970.
[48] A.F. Mosten, J. Chem. Phys. 24 (1956) 602.
[49] S.R. Becker, F.W. Worth, J. Am. Chem. Soc. 84 (1962) 4263.
[50] M. Pandeeswaran, K.P. Elango, Spectrochim. Acta A 65 (2006) 1148.
[51] M.H. Irving, T.S. Freiser, West. IUPAC Compendium of Analytical Nomenclature
Definitive Rules, Pergamon Press, Oxford, 1981.
[52] J.C. Miller, N.A. Miller, Statistics for Analytical Chemistry, second ed. Ellis Horwood
Ltd, England, 1988.
[53] M.M. Habeeb, H.A. Alwakil, A. El-Dissouky, H. Abdel-Fattah, Pol. J. Chem. 69 (1995)
1428.
[54] G.H. Gohar, M.M. Habeeb, Spectroscopy 14 (2000) 99.
[55] J. Kalenik, I. Majerz, L. Sobczyk, E. Grech, M.M. Habeeb, J. Chem. Soc., Faraday
Trans. 1 85 (1989) 3187.
[1] A. Weller, K. Zachariasse, J. Chem. Phys. 46 (1967) 4904.
[2] R.K. Gupta, R.A. Sing, J. Appl. Sci. 5 (2005) 28.
[3] H.A. Hashem, M.S. Refat, Surf. Rev. Lett. 13 (2006).
[4] A. Tracz, Polym. J. Chem. 76 (2002) 457.
[5] I.M. Ishaat, A. Ahmed, Spectrochim. Acta A 77 (2010) 437.
[6] M.A. Hossain, J.M. Linares, D. Powell, K. Bouman-james, Inorg. Chem. 40 (2001)
2936.
[7] K.H. Lee, J.I. Hong, Tetrahedron Lett. 41 (2000) 6083.
[8] G. Hennrich, H. Sonnenschein, U. Reschgenger, Tetrahedron Lett. 42 (2001) 2805.
[9] I.V. Kuvykin, V.V. Ptushenko, A.V. Vershubskii, A.N. Tikhonov, Biochim. Biophys.
Acta, Bioenerg. 1807 (2011) 336.
[10] H. Ozawa, T. Hino, H. Ohtsu, T. Wada, K. Tanaka, Inorg. Chim. Acta 366 (2011) 298.
[11] R. Vinu, S. Polisetti, G. Madras, Chem. Eng. J. 165 (2010) 784.
[12] C.J. Corcoran, H. Tavassol, M.A. Rigsby, P.S. Bagus, A. Wieckowski, J. Power Sources
195 (2010) 7856.
[13] A. Kololkovas, Essentials of Medicinal Chemistry, second ed. Wiley, New York,
1998 (Chapter 3).
[56] J. Kalenik, I. Majerz, L. Sobczyk, E. Grech, M.M. Habeeb, Collect. Czech. Chem.
Commun. 55 (1990) 80.