Organometallics
Communication
(c) Zhang, X.; Fan, S.; He, C.-Y.; Wan, X.; Min, Q.-Q.; Yang, J.; Jiang,
Z.-X. J. Am. Chem. Soc. 2010, 132, 4506. (d) Do, H.-Q.; Daugulis, O. J.
Am. Chem. Soc. 2008, 130, 1128. (e) Lafrance, M.; Rowley, C. N.;
Woo, T. K.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 8754.
(3) (a) Hartwig, J. F. Organotransition Metal Chemistry: From Bonding
to Catalysis; University Science Books, Sausalito, CA, 2010. (b) Coll-
man, J. P., Hegedus, L. S., Norton, J. R., Finke, R. G. Principles and
Applications of Organotransition Metal Chemistry; University Science
Books: Mill Valley, CA, 2006. (c) Negishi, E. I. Handbook of
Organopalladium Chemistry for Organic Synthesis; Wiley: New York,
2002. (d) Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004, 346,
1525.
substituents. The electron-rich PEt3 ligand plays a double role.
It can dissociate and directly hydrodehalogenate fluorinated
aryl halides. In addition, it may generate reactive electron-rich
metal centers capable of promoting nonselective processes.
Electrochemical measurements confirm that the metal center of
Pd(PEt3)4 more readily “donates” electrons in comparison to
Pd(PPh3)4 (E1 = −0.28 and 0.10 V vs Ag/Ag+, respectively;
1/2
Figures S3 and S4 in the Supporting Information). Although
electron-rich metal complexes are generally used in cross-
coupling reactions with nonfluorinated substrates,3 they might
be less efficient with fluorinated aryl halides. Furthermore, our
findings show that hydrodehalogenation occurs prior to the
formation of ArF−PdII−Br complexes. The DFT calculations
suggest that single-electron transfer from Pd(PEt3)4 to 1 is
disfavored by at about 12 kcal/mol. Therefore, such a process
coupled with a hydrogen atom transfer pathway is not likely,
and some, as of yet unknown, pathway involving proton or
hydride transfer must be operating. Nonetheless, our study
based on stoichiometric reactions does not take into account all
components of the catalytic process (e.g., CuI, NEt3, alkyne).
However, we have shown that under catalytic conditions
Pd(PEt3)4 and not CuI induces hydrodehalogenation. Other
parallel hydrodehalogenation processes might also be operating.
Our observations are most likely not limited to the Sonogashira
cross-coupling reaction with a model substrate presented here
but are applicable to a wider range of processes with fluorinated
aryl halides and platinum-group metals.
(4) Clot, E.; Meg
Soc. 2009, 131, 7817.
(5) (a) Albeniz, A. C.; Espinet, P.; Martın-Ruiz, B.; Milstein, D.
Organometallics 2005, 24, 3679. (b) Alben
́
ret, C.; Eisenstein, O.; Perutz, R. N. J. Am. Chem.
́
́
́
iz, A. C.; Espinet, P.; Martın-
́
Ruiz, B.; Milstein, D. J. Am. Chem. Soc. 2001, 123, 11504.
(6) (a) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100,
3009. (b) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 14, 2320.
(c) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44,
581.
(7) (a) Nguyen, B. V.; Yang, Z. Y.; Burton, D. J. J. Org. Chem. 1993,
58, 7368. (b) Neeman, T. X.; Whitesides, G. M. J. Org. Chem. 1988,
53, 2489. (c) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron
Lett. 1975, 50, 4467.
(8) (a) Collings, J. C.; Burke, J. M.; Smith, P. A.; Batsanov, A. S.;
Howard, J. A. K.; Marder, T. B. Org. Biomol. Chem. 2004, 2, 3172.
(b) Nguyen, P.; Yuan, Z.; Agocs, L.; Lesley, G.; Marder, T. B. Inorg.
Chim. Acta 1994, 220, 289.
(9) Lucassen, A. C. B.; Shimon, L. J. W.; van der Boom, M. E.
Organometallics 2006, 25, 3308.
ASSOCIATED CONTENT
* Supporting Information
(10) (a) Zenkina, O. V.; Karton, A.; Shimon, L. J. W.; Martin, J. M.
L.; van der Boom, M. E. Chem. Eur. J. 2009, 15, 10025. (b) Zenkina,
O. V.; Karton, A.; Freeman, D.; Shimon, L. J. W.; Martin, J. M. L.; van
der Boom, M. E. Inorg. Chem. 2008, 47, 5114. (c) Zenkina, O.;
Altman, M.; Leitus, G.; Shimon, L. J. W.; Cohen, R.; van der Boom, M.
E. Organometallics 2007, 26, 4528. (d) Strawser, D.; Karton, A.;
Zenkina, O. V.; Iron, M A.; Shimon, L. J. W.; Martin, J. M. L.; van der
Boom, M. E. J. Am. Chem. Soc. 2005, 127, 9322.
(11) (a) Johnson, S. A.; Taylor, E. T.; Cruise, S. J. Organometallics
2009, 28, 3842. (b) Laev, S. S.; Shteingarts, V. D. J. Fluorine Chem.
1999, 96, 175. (c) Chambers, R. D.; Drakesmith, F. G.; Musgrave, W.
K. R. J. Chem. Soc. 1965, 5045.
(12) (a) For hydrodehalogenation of fluorinated arenes with
P(NEt2)3: Bardin, V. V.; Pressman, L. S. Russ. Chem. Bull. 1997, 46,
786. (b) For hydrodehalogenation of p-halogenoperfluoroanilines:
Kobayashi, H.; Sonoda, T.; Takuma, K.; Honda, N.; Nakata, T. J.
Fluorine Chem. 1985, 27, 1.
(13) Reacting Pd(PEt3)4 in THF/H2O (6:1 v/v) at room
temperature does not generate metal hydrides capable of hydro-
dehalogenation.
■
S
Text, figures, tables, and CIF files giving complete experimental
and computational details and characterization data. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Author
■
Present Address
§Department of Chemical Sciences, Indian Institute of Science
Education and Research Bhopal, Bhopal 462023, India.
ACKNOWLEDGMENTS
■
This research was supported by the Helen and Martin Kimmel
Center for Molecular Design. J.C. thanks the EU (FP7
program) for an Incoming Marie Curie fellowship. Dr. A. C.
B. Lucassen is acknowledged for his assistance. M.E.v.d.B. is the
incumbent of the Bruce A. Pearlman Professorial Chair in
Synthetic Organic Chemistry.
(14) Pd(PEt3)4 and Pd(PPh3)4 undergo reversible phosphine
dissociation: Mann, B. E.; Musco, A. J. Chem. Soc., Dalton Trans.
1975, 1673.
(15) (a) Kraatz, H.-B.; van der Boom, M. E.; Ben-David, Y.; Milstein,
D. Isr. J. Chem. 2001, 41, 163. (b) Hall, T. L.; Lappert, M. F.; Lednore,
P. W. J. Chem. Soc., Dalton Trans. 1980, 1448. (c) Tsou, T. T.; Kochi, J.
K. J. Am. Chem. Soc. 1979, 101, 6319.
REFERENCES
■
(1) (a) Gladysz, J. A. Catalysis Involving Fluorous Phases:
Fundamentals and Directions for Greener Methodologies. In Hand-
book of Green Chemistry; Anastas, P., Crabtree, R. H., Eds.; Crabtree, R.
H., Vol. Ed.; Wiley-VCH: Weinheim, Germany, 2009; Homogeneous
Catalysis Vol. 1, pp 17−38. (b) Begue, J.-P.; Bonnet-Delpon, D. J.
Fluorine Chem. 2006, 127, 992. (c) Reichenbaecher, K.; Suess, H. I.;
Hulliger, J. Chem. Soc. Rev. 2005, 34, 22. (d) Kirsch, P. Modern
Fluoroorganic Chemistry. Synthesis, Reactivity, Applications; Wiley: New
York, 2004. (e) Clark, J. H.; Wails, D.; Bastock, T. W. Aromatic
Fluorination; CRC Press: Boca Raton, FL, 1996.
(16) For an example of Pd(I) complexes: Baya, M.; Houghton, J.;
Konya, D.; Champouret, Y.; Daran, J.−C.; Almeida Lenero, K. Q.;
̃
Schoon, L.; Mul, W. P.; van Oort, A. B.; Meijboom, N.; Drent, E.;
Orpen, A. G.; Poli, R. J. Am. Chem. Soc. 2008, 130, 10612.
(17) PCM(THF)-PBE0/SDB-cc-pVDZ//PBE/SDD(d)/DFBS level
of theory; see the Supporting Information for full computational
details.
(18) Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic
Compounds; CRC Press: Boca Raton, FL, 2003.
(2) (a) He, C.-Y.; Fan, S.; Zhang, X. J. Am. Chem. Soc. 2010, 132,
12850. (b) Wei, Y.; Su, W. J. Am. Chem. Soc. 2010, 132, 16377.
1274
dx.doi.org/10.1021/om200898t|Organometallics 2012, 31, 1271−1274