C O M M U N I C A T I O N S
Scheme 2. CDC Reaction of Isochroman with 2-pentanone
Table 2. CDC Reaction of Benzyl Ethers with Ketonesa
Scheme 3. Tentative Mechanism for the CDC Reaction of Benzyl
Ethers with Ketones Mediated by DDQ
by using DDQ as a dehydrogenating reagent and an organomediator.
The new method has several advantages: (1) simple benzyl ethers
and ketones can be used directly; (2) no metal is needed for the
reaction; (3) no additional reagent is required. The scope, mecha-
nism, and application of this method are under investigation.
Acknowledgment. We are grateful to Canada Research Chair
(Tier I) foundation (to C.J.L.) and the NSF-EPA joint program for a
Sustainable Environment for support of our research. Y.Z. thanks Mc-
Gill University for the hospitality during the aftermath of Hurricane
Katrina.
Supporting Information Available: Representative experimental
procedure and characterization of all new compounds (PDF). This
material is available free of charge via the Internet at http:/pubs.acs.org.
References
(1) Diederich, F.; Stang, P. J. Metal-Catalyzed Cross-Coupling Reactions;
Wiley-VCH: New York, 1998.
(2) For general reviews on organocatalysis, see: (a) Asymmetric Organoca-
talysis; Berkessel, A., Gro¨ger, H., Eds.; Wiley-VCH: Weinheim, Germany,
2005. (b) Acc. Chem. Res. 2004, 37(8), special issue. (c) List, B.
Tetrahedron 2002, 58, 5573. (d) List, B. Synlett 2001, 1675.
(3) For reviews, see: (a) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. ReV. 2002,
102, 1731. (b) Dyker, G. Angew. Chem. 1999, 38, 1698. (c) Naota, T.;
Takaya, H.; Murahashi, S. I. Chem. ReV. 1998, 98, 2599. For some recent
examples, see: (d) Chatani, N.; Asaumi, T.; Yorimitsu, S.; Ikeda, T.;
Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2001, 123, 10935. (e) Goossen,
L. J. Angew. Chem., Int. Ed. 2002, 41, 3775. (f) Arndtsen, B. A.; Bergman,
R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154. (g)
Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science 2000, 287,
1995. (h) Goldman, A. S. Nature 1993, 366, 514. (i) Crabtree, R. H. J.
Organomet. Chem. 2004, 689, 4083. (j) Jia, C.; Kitamura, T.; Fujiwara,
Y. Acc. Chem. Res. 2001, 34, 633.
(4) (a) Winterton, N. Green Chem. 2001, 3, G73. (b) Anastas, P. T.; Warner,
J. C. Green Chemistry Theory and Practice; Oxford University Press:
New York, 1998.
(5) (a) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2006, 128, 56. (b) Li, Z.; Li, C.-J.
Eur. J. Org. Chem. 2005, 3173. (c) Li, Z.; Li, C.-J. J. Am. Chem. Soc.
2005, 127, 6968. (d) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 3672.
(e) Li, Z.; Li, C.-J. Org. Lett. 2004, 6, 4997. (f) Li, Z.; Li, C.-J. J. Am.
Chem. Soc. 2004, 126, 11810.
(6) (a) Buckle, D. R. Encyclopaedia of Reagent for Organic Synthesis;
Paquette, L. A., Ed.; John Wiley & Sons: Chichester, UK, 1995; Vol. 3,
p 1699. (b) Walker, D.; Hiebert, J. D. Chem. ReV. 1966, 66, 153. For a
recent example, see: Ying, B.-P.; Trogden, B. G.; Kohlman, D. T.; Liang,
S. X.; Xu, Y.-C. Org. Lett. 2004, 6, 1523.
a Reaction conditions: ether (0.2mmol), ketone (0.6 mmol), DDQ (0.24
mmol), N2, 100 °C, 2.5 h. b Isolated yield; the ratios of diastereomers
measured prior to purification are given in parentheses. c 1H NMR yield
with internal standard.
(7) (a) Braude, E. A.; Linstead, R. P.; Wooldridge, K. R. J. Chem. Soc. 1956,
3037. (b) Cacchi, S.; La Torre, F.; Paolucci, G. Synthesis 1978, 848.
(8) (a) Lee-Ruff, E.; Ablenas, F. J. Can. J. Chem. 1989, 67, 699. (b) Caputo,
R.; Guaragna, A.; Palumbo, G.; Pedatella, S. J. Org. Chem. 1997, 62,
9369. (c) Wang, W.; Li, T.; Attardo, G. J. Org. Chem. 1997, 62, 6598.
(d) Narasimhan, N. S.; Bapat, C. P. J. Chem. Soc., Perkin Trans. 1 1984,
1435. (e) Piva, O.; Amougay, A.; Pete, J.-P. Tetrahedron Lett. 1991, 32,
3993. (f) Muzart, J. Synthesis 1993, 11. For other representative examples
of allylic/benzylic oxidations and functionalization, see: (g) Chen, C.;
Mariano, P. S. J. Org. Chem. 2000, 65, 3252. (h) Aubele, D. L.; Floreancig,
P. E. Org. Lett. 2002, 4, 3443 and references therein.
and generates a benzoxy cation, and the anionic oxygen of DDQ
radical anion then abstracts an R-hydrogen from the ketone to
generate an enolate. Finally, the attack of the enolate on the benzoxy
cation generates the CDC product and the quinone derivative.
In summary, a novel direct Cross-Dehydrogenative-Coupling
(CDC) between benzyl ethers and simple ketones was developed
(9) Zhang, Y.; Li, C.-J. Angew. Chem., Int. Ed. 2006, 45, 1949.
JA060050P
9
J. AM. CHEM. SOC. VOL. 128, NO. 13, 2006 4243