10.1002/ejoc.201700412
European Journal of Organic Chemistry
COMMUNICATION
the crude reaction mixture purified via flash column chromatography to
afford product 3.
CO2Me
9d
4
5
82
37
5:1
80
94
CF3
N
Ts
Molecular sieves (3 Å, 1.2 g), Rh2(R-DOSP)4 (4.4 mg, 0.002 mmol, 1
mol%) were dissolved in dry n-hexane (10 mL). Diazo compound 3 (0.23
mmol) was added and the reaction mixture was stirred at 22 °C under
argon until all diazo compound was consumed (TLC). The reaction
mixture was passed through a short silica plug which was washed with
CH2Cl2 (3 x 5 mL). The reaction mixture was concentrated in vacuo and
purified via column chromatography to afford dihydroindole 9.
CO2Me
9e
13:1
N
Ts
Ph
CO2Me
9f
9g
9h
9i
6
7
8
9
86
73
92
48
8:1
8:1
64
71
42
75
N
Ts
Acknowledgements
CO2Me
Financial support by Pierre Fabre, France, and the School of
Chemistry, Cardiff University, is gratefully acknowledged. We
thank the EPSRC National Mass Spectrometry Facility,
Swansea, for mass spectrometric data.
N
Ts
CO2Me
14:1
6:1
N
Ts
Keywords: Diazo compounds • azide • dihydroindole • C–H
CO2Me
insertion • rhodium
N
Ts
Br
[1] a) H. Ishikawa, D. A. Colby, S. Seto, P. Va, A. Tam, H. Kakei, T. J. Rayl, I.
Hwang, D. L. Boger, J. Am. Chem. Soc. 2009, 131, 4904-4916; b) S.
Yokoshima, H. Tokuyama, T. Fukuyama, Chem. Rec. 2010, 10, 101-118.
[2] a) T. Bui, S. Syed, C. F. Barbas III, J. Am. Chem. Soc. 2009, 131, 8758-
8759; b) G. Pandey, J. Khamrai, A. Mishra, Org. Lett. 2015, 17, 952-955.
[3] A. Rakhit, M. E. Hurley, V. Tipnis, J. Coleman, A. Rommel, H. R. Brunner,
J. Clin. Pharmacol. 1986, 26, 156-164.
[4] a) G. Evano, N. Blanchard, M. Toumi, Chem. Rev. 2008, 108, 3054-3131;
b) J. P. Wolfe, R. A. Rennels, S. L. Buchwald, Tetrahedron 1996, 52,
7525-7546; c) B. H. Yang, S. L. Buchwald, Org. Lett. 1999, 1, 35-38.
[5] J. N. Johnston, M. A. Plotkin, R. Viswanathan, E. N. Prabhakaran, Org.
Lett. 2001, 3, 1009-1011.
CO2Me
Ph
10
11
53
7:1
33
48
9j
N
Ts
CO2Me
64
>99:1
9k
N
Ts
[6] a) D. W. Zhang, L. S. Liebeskind, J. Org. Chem. 1996, 61, 2594-2595; b)
W. F. Bailey, X. L. Jiang, J. Org. Chem. 1996, 61, 2596-2597; c) S. Anas,
H. B. Kagan, Tetrahedron: Asymmetry 2009, 20, 2193-2199; d) D. Liu, G.
Zhao, L. Xiang, Eur. J. Org. Chem. 2010, 3975-3982.
[a] Reactions performed according to the conditions shown in
Table 2, entry 8. [b] Combined yield of 9 + 10. [c] Determined by 1H
NMR. [d] Determined by HPLC. [e] 1 mol% catalyst used.
[7] E. Ascic, S. L. Buchwald, J. Am. Chem. Soc. 2015, 137, 4666-4669.
[8] H. M. L. Davies, M. V. A. Grazini, E. Aouad, Org. Lett. 2001, 3, 1475-
1477.
[9] H. Saito, H. Oishi, S. Kitagaki, S. Nakamura, M. Anada, S. Hashimoto,
Org. Lett. 2002, 4, 3887-3890.
A bulkier ester seemed to have a negative impact on the
asymmetric cyclization with a drop of both de and ee (9b). Both
electron-donating and electron-withdrawing groups showed
good conversion and stereoselectivity affording 9c-h in good ee
under the optimized reaction conditions. On the other hand, 2-
substituted aryl derivatives 9e and 9i were obtained with 72% de
and >75% ee, but a slower conversion was observed.
[10] R. P. Reddy, G. H. Lee, H. M. L. Davies, Org. Lett. 2006, 8, 3437-3440.
[11] G. Maas, Angew. Chem. Int. Ed. 2009, 48, 8186-8195.
[12] a) S. M. Nicolle, W. Lewis, C. J. Hayes, C. J. Moody, Angew. Chem. Int.
Ed. 2016, 55, 3749-3753; b) M. Peña-López, M. Beller, Angew. Chem.
Int. Ed. 2017, 56, 46-48.
[13] a) T. Ye, M. A. McKervey, Chem. Rev. 1994, 94, 1091-1160; b) M. P.
Doyle, M. A. McKervey, T. Ye, in Modern Catalytic Methods for Organic
Synthesys with Diazo Compouds: From Cyclopropanes to Ylides, Wiley,
New York, 1998; c) H. M. L. Davies, A. M. Walji in Modern Rhodium-
Catalyzed Organic Reactions, Wiley-VCH, Weinheim, 2005, pp. 301-340.
[14] a) S. Lee, H.-J. Lim, K. L. Cha, G. A. Sulikowski, Tetrahedron 1997, 53,
16521-16532; b) G. Sulikowski, S. Lee, Tetrahedron Lett. 1999, 40, 8035-
8038.
In conclusion, we have developed a new synthetic pathway
to afford trans-2,3-dihydro-1H-indoles from α-diazocarbonyl
precursors in good yields and with high enantioselective
excesses using a stereoselective Rh(II)-catalyzed C–H insertion.
[15] a) H. M. L. Davies, W. R. Cantrell, K. R. Romines, J. S. Baum, Org.
Synth. 1991, 70, 93; b) H. M. L. Davies, M. V. A. Grazini, E. Aouad, Org.
Lett. 2001, 3, 1475-1477; c) D. F. Taber, R. B. Sheth, P. V. Josh, J. Org.
Chem. 2005, 70, 2851-2854.
Experimental Section
[16] a) S. T. R. Müller, A. Murat, D. Maillos, P. Lesimple, P. Hellier, T. Wirth,
Chem. Eur. J. 2015, 21, 7016-7020; b) S. T. R. Müller, A. Murat, P.
Hellier, T. Wirth, Org. Process Res. Chem. 2016, 20, 495-502.
[17] CCDC-1441276 (3a), CCDC-1441277 (4a) and CCDC-1441275 (9a)
contain the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crystallographic
A solution containing the ester 2 (1 mmol) and p-NBSA (456 mg, 2 mmol)
in CH3CN (4 mL) was cooled to 0 °C. DBU (374 µL, 2.5 mmol) was
added dropwise. The reaction was stirred for 48 h at room temperature
(or 45 °C). After completion (TLC), the reaction mixture was cooled to
0 °C and a pH 7 phosphate buffer (10 mL) was added. The mixture was
extracted with CH2Cl2 (2 x 20 mL) and the combined organic fractions
were washed with pH 7 phosphate buffer (10 mL) and brine (15 mL) and
dried over MgSO4. The solvent was evaporated in vacuo at 30 °C and
[18] M. Regitz, Angew. Chem. Int. Ed. 1966, 5, 681-682.
[19] a) M. Schroen, S. Bräse, Tetrahedron 2005, 61, 12186-12192; b) E. L.
Myers, R. T. Raines, Angew. Chem. Int. Ed. 2009, 48, 2359-2363.
[20] D. A. Evans, T. C. Britton, J. A. Ellman, R. L. Dorow, J. Am. Chem. Soc.
1990, 112, 4011-4030.
This article is protected by copyright. All rights reserved.