G. Tresadern et al. / Bioorg. Med. Chem. Lett. 21 (2011) 7255–7260
7259
16. Baxter, E. W.; Conway, K. A.; Kennis, L.; Bischoff, F.; Mercken, M. H.; De Winter,
H. L.; Reynolds, C. H.; Tounge, B. A.; Luo, C.; Scott, M. K.; Huang, Y.; Braeken, M.;
Pieters, S. M. A.; Berthelot, D. J. C.; Masure, S.; Bruinzeel, W. D.; Jordan, A. D.;
Parker, M. H.; Boyd, R. E.; Qu, J.; Alexander, R. S.; Brenneman, D. E.; Reitz, A. B. J.
Med. Chem. 2007, 50, 4261.
17. Edwards, P. D.; Albert, J. S.; Sylvester, M.; Aharony, D.; Andisik, D.; Callaghan,
O.; Campbell, J. B.; Carr, R. A.; Chessari, G.; Congreve, M.; Frederickson, M.;
Folmer, R. H. A.; Geschwindner, S.; Koether, G.; Kolmodin, K.; Krumrine, J.;
Mauger, R. C.; Murray, C. W.; Olsson, L.-L.; Patel, S.; Spear, N.; Tian, G. J. Med.
Chem. 2007, 50, 5912.
18. See for example (a) Malamas, M. S.; Erdei, J.; Gunawan, I.; Turner, J.; Hu, Y.;
Wagner, E.; Fan, K.; Chopra, R.; Olland, A.; Bard, J.; Jacobsen, S.; Magolda, R. L.;
Pangalos, M.; Robichaud, A. J. J. Med. Chem. 2010, 53, 1146; (b) Zhou, P.; Li, Y.;
Fan, Y.; Wang, Z.; Chopra, R.; Olland, A.; Hu, Y.; Magolda, R. L.; Pangalos, M.;
Reinhart, P. H.; Turner, M. J.; Bard, J.; Malamas, M. S.; Robichaud, A. J. Bioorg.
Med. Chem. Lett. 2010, 20, 2326.
19. (a) Malamas, M. S.; Barnes, K.; Hui, Y.; Johnson, M.; Lovering, F.; Condon, J.;
Fobare, W.; Solvibile, W.; Turner, J.; Hu, Y.; Manas, E. S.; Fan, K.; Olland, A.;
Chopra, R.; Bard, J.; Pangalos, M. N.; Reinhart, P.; Robichaud, A. J. Bioorg. Med.
Chem. Lett. 2010, 20, 2068; (b) Cheng, Y.; Judd, T. C.; Bartberger, M. D.; Brown,
J.; Chen, K.; Fremeau, R. T.; Hickman, D.; Hitchcock, S. A.; Jordan, B.; Li, V.;
Lopez, P.; Louie, S. W.; Luo, Y.; Michelsen, K.; Nixey, T.; Powers, T. S.; Rattan, C.;
Sickmier, E. A.; St. Jean, D. J.; Wahl, R. C.; Wen, P. H.; Wood, S. J. Med. Chem.
2011, 54, 5836.
Molecules 26 and (À)-37 were tested for their ability to reduce
Ab peptides in vivo.36 A 30 mg/kg sc dose of 26 resulted in a 34%
reduction in AbTOT levels at 1 h, with no effect seen at 2 and 4 h
due to the low amounts in brain. The higher brain levels of (À)-
37 following the 60 mg/kg sc dose resulted in a more pronounced
reduction of AbTOT by 48%, 67% and 73% at 1, 2 and 4 h respectively.
The results demonstrate that in vivo reduction of Ab peptides is
tractable for this series.
Overall, aminopiperazinones show moderate basicity (pKa <8.0),
relatively low lipophilicity, (log P 2.5 for (À)-37) and low MW (390
for (À)-37). The series demonstrate good cellular activity and
examples show in vivo reduction of Ab peptides following subcuta-
neous administration. Future work will focus on reducing clear-
ance by improvement of metabolic stability.
Acknowledgments
The authors thank Daniele Bemporad for input in the early pro-
ject and Jeroen Van De Ven and Geert Van Hecke for generating the
in vitro data. Crystals were grown and soaked by Shanghai Medic-
ilon, Inc. and Medicilon Preclinical Research (Shanghai) LLC. The X-
ray experiments were performed on the PX1 BEAMLINE at the
Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland.
Data were collected by Expose GmbH.
20. Wager, T. T.; Chandrasekaran, R. Y.; Hou, X.; Troutman, M. D.; Verhoest, P. R.;
Villalobos, A.; Will, Y. ACS Chem. Neurosci. 2010, 1, 420.
21. Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Taylor, R. D. Proteins
2003, 52, 609.
22. Chemical Computing Group Inc. Molecular Operating Environment (MOE),
1010 Sherbrooke St. W, Suite 910, Montreal, QC, Canada; available from
23. Yu, N.; Hayik, S. A.; Wang, B.; Liao, N.; Reynolds, C. H.; Merz, K. M. J. Chem.
Theory Comput. 2006, 2, 1057.
References and notes
24. Dominguez, J. L.; Christopeit, T.; Villaverde, M. C.; Gossas, T.; Otero, J. M.;
Nystrom, S.; Baraznenok, V.; Lindstrom, E.; Danielson, U. H.; Sussman, F.
Biochemistry 2010, 49, 7255.
25. ACD Labs software. pKa. Advanced chemistry development Inc. 110 Yonge
Street, 14th Floor, Toronto, Ontario, Canada, M5C 1T4. http://
1. See (a) Brody, H. Nature 2011, 475, Suppl, S1. (b) Abbott, A. Nature 2011, 475,
Suppl, S2–S4. The global impact of dementias was estimated at US$604 billion
per year, Alzheimer’s constitutes 50–80% of dementia cases hence a US$300
billion estimate for global Alzheimer’s burden.
26. The only modification to the ACD pKa prediction was for molecule 6 (3IGB),
where the two cyclic sp2 nitrogens were predicted to have very similar pKa’s.
The sp2 nitrogen in the 6-membered ring had a calculated basic pKa of 7.2 and
the imidazole nitrogen 6.9. It is known that the amidine motif forms the salt
bridge interaction with the active site aspartic acids therefore the imidazole
nitrogen was protonated.
27. Liao, C.; Nicklaus, M. C. J. Chem. Inf. Model. 2009, 49, 2801.
28. Gorfe, A. A.; Caflisch, A. Structure 2005, 13, 1487.
29. McGaughey, G. B.; Colussi, D.; Graham, S. L.; Lai, M.-T.; Munshi, S. K.;
Nantermet, P. G.; Pietrak, B.; Rajapakse, H. A.; Selnick, H. G.; Stauffer, S. R.;
Holloway, M. K. Bioorg. Med. Chem. Lett. 2007, 17, 1117.
30. Craig, I. R.; Essex, J. W.; Spiegel, K. J. Chem. Inf. Model. 2010, 50, 511.
31. Steele, T. G.; Hills, I. D.; Nomland, A. A.; de Leon, P.; Allison, T.; McGaughey, G.;
Colussi, D.; Tugusheva, K.; Haugabook, S. J.; Espeseth, A. S.; Zuck, P.; Graham, S.
L.; Stachel, S. J. Bioorg. Med. Chem. Lett. 2009, 19, 17.
32. When the reaction was performed using diisopropylethylamine as base a
diacylation product was observed in all cases (30–40%).
2. (a) Scarpini, E.; Scheltens, P.; Feldman, H. Lancet Neurology 2003, 2, 539; (b)
Standridge, J. B. Clinical Therap. 2004, 26, 615; (c) Citron, M. Nat. Rev. Neurosci.
2004, 5, 677.
3. (a) Dickson, D. W. J. Neuropathol. Exp. Neurol. 1997, 56, 321; (b) Hardy, J.;
Selkoe, D. J. Science 2002, 5580, 353; (c) Selkoe, D. J.; Schenk, D. Annu. Rev.
Pharmacol. Toxicol. 2003, 43, 545.
4. (a) Vassar, R.; Bennett, B. D.; Babu-Khan, S.; Kahn, S.; Mendiaz, E. A.; Denis, P.;
Teplow, D. B.; Ross, S.; Amarante, P.; Loeloff, R.; Luo, Y.; Fisher, S.; Fuller, J.;
Edenson, S.; Lile, J.; Jarosinski, M. A.; Biere, A. L.; Curran, E.; Burgess, T.; Louis, J.-
C.; Collins, F.; Treanor, J.; Rogers, G.; Citron, M. Science 1999, 286, 735; (b)
Wolfe, M. S.; Xia, W.; Ostaszewski, B. L.; Diehl, T. S.; Kimberly, W. T.; Selkoe, D.
J. Nature 1999, 398, 513; (c) Vassar, R.; Citron, M. Neuron 2000, 27, 419; (d)
Selkoe, D. J. Physiol. Rev. 2001, 81, 741.
5. De Strooper, B.; Vassar, R.; Golde, T. Nature Rev. Neurol. 2010, 6, 99.
6. Albert, J. S. Progress Med. Chem. 2009, 48, 133.
7. Ghosh, A. K.; Shin, D.; Downs, D.; Koelsch, G.; Lin, X.; Ermolieff, J.; Tang, J. J. Am.
Chem. Soc. 2000, 122, 3522.
8. Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh, A. K.; Zhang, X. C.;
Tang, J. Science 2000, 290, 150.
9. Stauffer, S. R.; Stanton, M. G.; Gregro, A. R.; Steinbeiser, M. A.; Shaffer, J. R.;
Nantermet, P. G.; Barrow, J. C.; Rittle, K. E.; Collusi, D.; Espeseth, A. S.; Lai, M.-T.;
Pietrak, B. L.; Holloway, M. K.; McGaughey, G. B.; Munshi, S. K.; Hochman, J. H.;
Simon, A. J.; Selnick, H. G.; Graham, S. L.; Vacca, J. P. Bioorg. Med. Chem. Lett.
2007, 17, 1788.
10. Iserloh, U.; Cumming, J. N. In Aspartic Acid Proteases as Therapeutic Targets;
Ghosh, A. K., Ed.; Wiley-VCH: Weinheim, 2010; p 441. chapter 16.
11. Nantermet, P. G.; Rajapakse, H. A.; Stanton, M. G.; Stauffer, S. R.; Barrow, J. C.;
Gregro, A. R.; Moore, K. P.; Steinbeiser, M. A.; Swestock, J.; Selnick, H. G.;
Graham, S. L.; McGaughey, G. B.; Colussi, D.; Lai, M.-T.; Sankaranarayanan, S.;
Simon, A. J.; Munshi, S.; Cook, J. J.; Holahan, M. A.; Michener, M. S.; Vacca, J. P.
ChemMedChem 2009, 4, 37.
12. Maillard, M. C.; Hom, R. K.; Benson, T. E.; Moon, J. B.; Mamo, S.; Bienkowski, M.;
Tomasselli, A. G.; Woods, D. D.; Prince, D. B.; Paddock, D. J.; Emmons, T. L.;
Tucker, J. A.; Dappen, M. S.; Brogley, L.; Thorsett, E. D.; Jewett, N.; Sinha, S.;
Varghese, J. J. Med. Chem. 2007, 50, 776.
13. Cole, D. C.; Manas, E. S.; Stock, J. R.; Condon, J. S.; Jennings, L. D.; Aulabaugh, A.;
Chopra, R.; Cowling, R.; Ellingboe, J. W.; Fan, K. Y.; Harrison, B. L.; Hu, Y.;
Jacobsen, S.; Jin, G.; Lin, L.; Lovering, F. E.; Malamas, M. S.; Stahl, M. L.; Strand,
J.; Sukhdeo, M. N.; Svenson, K.; Turner, M. J.; Wagner, F.; Wu, J.; Zhou, P.; Bard,
J. J. Med. Chem. 2006, 49, 6158.
33. 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride.
34. Racemic compounds 18a, 26 and 37 were separated into their corresponding
enantiomers by chiral SFC (CHIRALPAK AD-H 5
35. Molecules 26 and (À)-37 were 99% and 100% metabolised respectively after
15 min incubation with mouse liver microsomes at 1 M concentration.
lm 250 Â 20 mm).
l
36. For in vivo Ab peptide levels detection mice were analyzed. In brief mice (CD1,
male, 22-28gr) treated with the compounds were examined and compared to
those untreated or treated with vehicle. Compounds were formulated in 20%
hydroxypropyl b cyclodextrin and administered as a single subcutaneous dose
to overnight fasted animals. After the indicated time animals were sacrificed
and the left hemisphere was resuspended in
8 volumes of 0.4% DEA
(diethylamine)/50 mM NaCl containing protease inhibitors (Roche-
11873580001 or 04693159001) per gram of tissue. All samples were
homogenized in the FastPrep-24 system (MP Biomedicals) using lysing
matrix D (MPBio #6913-100) at 6 m/s for 20 seconds. Homogenates were
centrifuged at 221.300Âg for 50 min. The resulting high speed supernatants
were then transferred to fresh eppendorf tubes. Nine parts of supernatant were
neutralized with 1 part 0.5 M Tris–HCl pH 6.8 and used to determine Ab levels.
To quantify the amount of AbTOT in the soluble fraction of the brain
homogenates, ELIZA was used. Briefly, the standards (a dilution of synthetic
Ab1-40, Bachem) were prepared with final concentrations ranging from 10000
to 0.3 pg/ml. The samples and standards were co-incubated with the
biotinylated mid-domain antibody 4G8. 50 ll of conjugate/sample or
conjugate/standards mixtures were then added to the antibody-coated plate
(antibody JRF/rAb/2). The plate was allowed to incubate overnight at 4 °C in
order to allow formation of the antibody-amyloid complex. A Streptavidine–
Peroxidase-Conjugate was added, followed 60 min later by an additional wash
step and addition of Quanta Blu fluorogenic peroxidase substrate according to
the manufacturer’s instructions (Pierce Corp., Rockford, Il). A reading was
performed after 10–15 min (excitation 320 nm /emission 420 nm).
14. Stachel, S. J.; Coburn, C. A.; Rush, D.; Jones, K. L. G.; Zhu, H.; Rajapakse, H.;
Graham, S. L.; Simon, A.; Holloway, M. K.; Allison, T. J.; Munshi, S. K.; Espeseth,
A. S.; Zuck, P.; Colussi, D.; Wolfe, A.; Pietrak, B. L.; Lai, M. –T.; Vacca, J. P. Bioorg.
Med. Chem. Lett. 2009, 19, 2977.
15. Malamas, M. S.; Erdei, J.; Gunawan, I.; Barnes, K.; Johnson, M.; Hui, Y.; Turner,
J.; Hu, Y.; Wagner, E.; Fan, K.; Olland, A.; Bard, J.; Robichaud, A. J. J. Med. Chem.
2009, 52, 6314.