Scheme 5 Enrichment of the alkyne-tagged molecule.
Further optimization is under way in our laboratory prior to
application of this new method to the enrichment of biomolecules,
such as peptide and proteins.
Notes and references
1 (a) Immobilized Affinity Ligand Techniques, ed. G. T. Hermanson,
A. K. Mallia and P. K. Smith, Academic Press, California, USA,
1992; (b) Handbook of Affinity Chromatography, ed. D. S. Hage, CRC
Press, Florida, USA, 2nd edn, 2006; (c) Y. Kabe, M. Hatakeyama,
S. Sakamoto. K. Nishino and H. Handa, in Protein Targeting with
Small Molecules: Chemical Biology Techniques and Applications, ed. H.
Osada, Wiley, New Jersey, USA, 2009, pp. 39–56.
2 (a) M. Wilchek and E. A. Bayer, Methods Enzymol., 1990, 184, 5–13;
(b) M. Wilchek and E. A. Bayer, Methods Enzymol., 1990, 184, 14–
45.
3 His-tag technology is an another reliable method for purification of
proteins bearing the tag introduced by genetic engineering, see ref. 1.
However, this tag is too large to utilize for a low-molecular-weight
bioactive compound.
4 J.-N. Rybak, S. B. Scheurer, D. Neri and G. Elia, Proteomics, 2004, 4,
2296–2299.
5 (a) M. Shimkus, J. Levy and T. Herman, Proc. Natl. Acad. Sci. U. S.
A., 1985, 82, 2593–2597; (b) M. C. Bryan, F. Fazio, H.-K. Lee, C.-Y.
Huang, A. Chang, M. D. Best, D. A. Calarese, O. Blixt, J. C. Paulson,
D. Burton, I. A. Wilson and C.-H. Wong, J. Am. Chem. Soc., 2004,
126, 8640–8641; (c) A. Klaikherd, S. Ghosh and S. Thayumanavan,
Macromolecules, 2007, 40, 8518–8520; (d) C. A. Gartner, J. E. Elias,
C. E. Bakalarski and S. P. Gygi, J. Proteome Res., 2007, 6, 1482–1491;
(e) N. Kanoh, H. Takyama, K. Honda, T. Moriya, T. Teruya, S. Simizu,
H. Osada and Y. Iwabuchi, Bioconjugate Chem., 2010, 21, 182–186.
6 A. E. Speers and B. F. Cravatt, J. Am. Chem. Soc., 2005, 127, 10018–
10019.
7 (a) S. H. L. Verhelst, M. Fonovic´ and M. Bogyo, Angew. Chem., Int.
Ed., 2007, 46, 1284–1286; (b) M. Fonovic´, S. H. L. Verhelst, M. T.
Sorum and M. Bogyo, Mol. Cell. Proteomics, 2007, 6, 1761–1770.
8 (a) K. D. Park, R. Liu and H. Kohn, Chem. Biol., 2009, 16, 763–772;
(b) A. Dirksen, S. Yegneswaran and P. E. Dawson, Angew. Chem., Int.
Ed., 2010, 49, 2023–2027.
Fig. 2 IR spectra of cobalt complexes.
cobalt beads 7 was carried out at 4 ◦C on a 50 nmol scale (50 mM).
The catch reaction was monitored by fluorescence analysis of the
supernatant after removal of the beads by centrifugation, and the
release reaction was separately monitored by HPLC analysis to
detect the released product (Scheme 4). To our delight, alkyne 1
reacted with cobalt complex 7 even under low concentration and
low temperature conditions, and 57% of the alkyne was held on
to the resin after it had been washed ten times with Hepes buffer.
Finally, amine 2 was obtained in 59% yield after treatment with
TFA.
Furthermore, in order to examine the selectivity of the catch
and release reactions, a mixture of equal amounts of alkyne-tagged
molecule 1 and its benzyl derivative 9 was treated with cobalt resin
7 (Scheme 5). Again, 57% of alkyne 1 was caught by the cobalt
resin, while 93% of 9 and 43% of 1 were recovered in the residual
and wash solutions. Subsequently, treatment of the resin with TFA
afforded the Nicholas product 2 in 43% yield together with 4% of
starting alkyne 1. It is noteworthy that only a negligible amount
of benzyl derivative 9 was detected. Hence, great enrichment of
alkyne-tagged molecule 1 has been achieved.
In summary, we have demonstrated direct and selective catch
and release reactions of alkyne-tagged molecules utilizing a
polymer-supported cobalt complex under mild conditions. To our
knowledge, this is the first example of direct catch and release
reactions of alkyne-tagged molecules in water. These proof-of-
concept experiments strongly indicate that this cobalt chemistry
would be in principle applicable to chemical biology studies.
9 (a) P. van der Veken, E. H. C. Dirksen, E. Ruijter, R. C. Elgersma,
A. J. R. Heck, D. T. S. Rijkers, M. Slijper and R. M. J. Liskamp,
ChemBioChem, 2005, 6, 2271–2280; (b) A. H. Fauq, R. Kache, M. A.
Khan and I. E. Vega, Bioconjugate Chem., 2006, 17, 248–254; (c) J.
Szychowski, A. Mahdavi, J. J. L. Hodas, J. D. Bagert, J. T. Ngo, P.
Landgraf, D. C. Dieterich, E. M. Schuman and D. A. Tirrell, J. Am.
Chem. Soc., 2010, 132, 18351–18360.
10 For selected reviews of click reactions in chemical biology, see: (a) P. F.
van Swieten, M. A. Leeuwenbrugh, B. M. Kessler and H. S. Overkleeft,
Org. Biomol. Chem., 2005, 3, 20–27; (b) P. M. E. Gramlich, C. T. Wirges,
A. Manetto and T. Carell, Angew. Chem., Int. Ed., 2008, 47, 8350–8358;
(c) S. H. Weisbrod and A. Marx, Chem. Commun., 2008, 5675–5685;
(d) F. Amblard, J. H. Cho and R. F. Schinazi, Chem. Rev., 2009, 109,
4207–4220; (e) M. van Dijk, D. T. S. Rijkers, R. M. J. Liskamp, C. F. van
Nostrum and W. E. Hennink, Bioconjugate Chem., 2009, 20, 2001–2016;
(f) D. M. Best, Biochemistry, 2009, 48, 6571–6584; (g) E. M. Sletten and
C. M. Bertozzi, Angew. Chem., Int. Ed., 2009, 48, 6974–6998; (h) R. K.
V. Lim and Q. Lin, Chem. Commun., 2010, 46, 1589–1600.
11 S. B. Miline, K. A. Tallman, R. Serwa, C. A. Rouzer, M. D. Armstrong,
L. J. Marnett, C. M. Lukehart, N. A. Porter and H. A. Brown, Nat.
Chem. Biol., 2010, 6, 205–207.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 7667–7670 | 7669
©