Journal of the American Chemical Society
Page 4 of 5
3847. (j) Shirakawa, S.; Liu, K.; Maruoka, K. J. Am. Chem. Soc.
were accomplished with a range of substrates. Thus, this method-
ology demonstrates utility for further application in the synthesis
of various axially chiral compounds. Further studies regarding
the detailed clarification of the reaction mechanism and applica-
tion of this methodology to the construction of other axially chiral
structures are currently underway and will be reported in due
course.
2012, 134, 916. (k) Liu, K.; Wu, X.; Kan, S. B. J.; Shirakawa,
S.; Maruoka, K. Chem.—Asian J. 2013, 8, 3214. (l) Shirakawa,
S.; Wu, X.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52,
14200. (m) Cheng, D.-J.; Yan, L.; Tian, S.-K.; Wu, M.-Y.;
Wang, L.-X.; Fan, Z.-L.; Zheng, S.-C.; Liu, X.-Y.; Tan, B. An-
gew. Chem., Int. Ed. 2014, 53, 3684. (n) Lu, S.; Poh, S. B.;
Zhao, Y. Angew. Chem., Int. Ed. 2014, 53, 11041. (o) Ma, G.;
Deng, J.; Sibi, M. P. Angew. Chem., Int. Ed. 2014, 53, 11818.
(p) Chan, V.; Kim, J. G.; Jimeno, C.; Carroll, P. J.; Walsh, P. J.
Org. Lett. 2004, 6, 2051. (q) Mori, K.; Ichikawa, Y.; Kobayashi,
M.; Shibata, Y.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc.
2013, 135, 3964. (r) Mori, K.; Ichikawa, Y.; Kobayashi, M.;
Shibata, Y.; Yamanaka, M.; Akiyama, T. Chem. Sci. 2013, 4,
4235. (s) Armstrong, R. J.; Smith, M. D. Angew. Chem., Int. Ed.
2014, 53, 12822. (t) Link, A.; Sparr, C. Angew. Chem., Int. Ed.
2014, 53, 5458.
1
2
3
4
5
6
7
8
ASSOCIATED CONTENT
9
Supporting Information
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Experimental procedures including spectroscopic and analytical
data. This material is available free of charge via the Internet at
(4) For enantioselective syntheses of axially chiral allenes by bi-
functional organocatalysts, see: (h) Inokuma, T.; Furukawa, M.;
Uno, T.; Suzuki, Y.; Yoshida, K.; Yano, Y.; Matsuzaki, K.;
Takemoto, Y. Chem.—Eur. J. 2011, 17, 10470. (i) Inokuma, T.;
Furukawa, M.; Suzuki, Y.; Kimachi, T.; Kobayashi, Y.; Take-
moto, Y. ChemCatChem 2012, 4, 983.
AUTHOR INFORMATION
Corresponding Author
asano.keisuke.5w@kyoto-u.ac.jp;
u.ac.jp
matsubara.seijiro.2e@kyoto-
(5) For selected examples of chiral N-oxide catalysts, see: (a)
Nakajima, M.; Saito, M.; Shiro, M.; Hashimoto, S. J. Am. Chem.
Soc. 1998, 120, 6419. (b) Saito, M.; Nakajima, M.; Hashimoto,
S. Chem. Commun. 2000, 1851. (c) Zheng, K.; Shi, J.; Liu, X.;
Feng, X. J. Am. Chem. Soc. 2008, 130, 15770. (d) Yu, Z.; Liu,
X.; Dong, Z.; Xie, M.; Feng, X. Angew. Chem., Int. Ed. 2008, 47,
1308. (e) Yang, X.; Zhou, X.; Lin, L.; Chang, L.; Liu, X.; Feng,
X. Angew. Chem., Int. Ed. 2008, 47, 7079. (f) Hrdina, R.; Ope-
kar, F.; Roithová, J.; Kotora, M. Chem. Commun. 2009, 2314.
(g) Malkov, A. V.; Ramírez-Lόpez, P.; Biedermannová, L.;
Rulíšek, L.; Dufková, L.; Kotora, M.; Zhu, F.; Kočovský, P. J.
Am. Chem. Soc. 2008, 130, 5341. (h) Traverse, J. F.; Zhao, Y.;
Hoveyda, A. H.; Snapper, M. L. Org. Lett. 2005, 7, 3151. For
reviews, see: (i) Karayannis, N. M.; Pytlewski, L. L.; Mikulski,
C. M. Coord. Chem. Rev. 1973, 11, 93. (j) Chelucci, G.; Mu-
rineddu, G.; Pinna, G. A. Tetrahedron: Asymmetry 2004, 15,
1373. (k) Malkov, A. V.; Kočovský, P. Eur. J. Org. Chem. 2007,
29. (l) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed.
2008, 47, 1560. (m) Kotora, M. Pure Appl. Chem. 2010, 82,
1813. (n) Chen, J.; Takenaka, N. Chem. Eur. J. 2009, 15, 7268.
(o) Liu, X.; Lin, L.; Feng, X. Acc. Chem. Res. 2011, 44, 574.
(6) Catalysts 3a–3e were prepared according to previous studies
(see the Supporting Information for details): for 3a–3d, see ref
1c; for 3e, see ref 1a. Catalyst 3f was purchased from Aldrich;
see: Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126,
10558.
(7) The reaction conducted using 1 equiv of NBA (4a) afforded a
mixture of multiple products including monobromide 1i, while
few amount of 1j was generated; the ee of 1i was >95% ee (see
the Supporting Information for details). Thus, we currently con-
sider that the bromination at the ortho position of the hydroxy
group occurs before the bromination at the para position of the
hydroxy group.
(8) The reaction of 3-hydroxy-N,N-dicyclohexylbenzamide (5b)
afforded the corresponding tribromide, 2,4,6-tribromo-N,N-
dicyclohexyl-3-hydroxybenzamide (6b) in 99% yield with 79%
ee; the absolute configuration of 6b was determined by X-ray
analysis (see the Supporting Information for details).
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
We thank Professor Takuya Kurahashi (Kyoto University) for X-
ray crystallographic analysis. This work was supported financial-
ly by the Japanese Ministry of Education, Culture, Sports, Science
and Technology. K.A. also acknowledges the Asahi Glass Foun-
dation, Toyota Physical and Chemical Research Institute, and
Tokyo Institute of Technology Foundation.
REFERENCES
(1) (a) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003,
125, 12672. (b) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.;
Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119. (c) Vakulya,
B.; Varga, S.; Csámpai, A.; Soós, T. Org. Lett. 2005, 7, 1967.
(d) Hamza, A.; Schubert, G.; Soós, T.; Pápai, I. J. Am. Chem.
Soc. 2006, 128, 13151. (e) Connon, S. J. Chem.—Eur. J. 2006,
12, 5418. (f) Zhu, J.-L.; Zhang, Y.; Liu, C.; Zheng, A.-M.;
Wang, W. J. Org. Chem. 2012, 77, 9813.
(2) (a) Asano, K.; Matsubara, S. J. Am. Chem. Soc. 2011, 133,
16711. (b) Asano, K.; Matsubara, S. Org. Lett. 2012, 14, 1620.
(c) Okamura, T.; Asano, K.; Matsubara, S. Chem. Commun.
2012, 48, 5076. (d) Fukata, Y.; Asano, K.; Matsubara, S. Chem.
Lett. 2013, 42, 355. (e) Fukata, Y.; Miyaji, R.; Okamura, T.;
Asano, K.; Matsubara, S. Synthesis 2013, 45, 1627. (f) Miyaji,
R.; Asano, K.: Matsubara, S. Org. Lett. 2013, 15, 3658. (g) Fu-
kata, Y.; Asano, K.; Matsubara, S. J. Am. Chem. Soc. 2013, 135,
12160. (h) Miyaji, R.; Asano, K.; Matsubara, S. Org. Biomol.
Chem. 2014, 12, 119. (i) Yoneda, N.; Hotta, A.; Asano, K.;
Matsubara, S. Org. Lett. 2014, 16, 6264.
(3) (a) Brandes, S.; Bella, M.; Kjærsgaard, A.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2006, 45, 1147. (b) Brandes, S.; Niess,
B.; Bella, M.; Prieto, A.; Overgaard, J.; Jørgensen, K. A.
Chem.—Eur. J. 2006, 12, 6039. (c) Li, G.-Q.; Gao, H.; Keene,
C.; Devonas, M.; Ess, D. H.; Kürti, L. J. Am. Chem. Soc. 2013,
135, 7414. (d) De, C. K.; Pesciaioli, F.; List, B. Angew. Chem.,
Int. Ed. 2013, 52, 9293. (e) Gustafson, J. L.; Lim, D.; Miller, S.
J. Science 2010, 328, 1251. (f) Pathak, T. P.; Miller, S. J. J. Am.
Chem. Soc. 2012, 134, 6120. (g) Barrett, K. T.; Miller, S. J. J.
Am. Chem. Soc. 2013, 135, 2963. (h) Barrett, K. T.; Metrano, A.
J.; Rablen, P. R.; Miller, S. J. Nature 2014, 509, 71. (i) Cozzi, P.
G.; Emer, E.; Gualandi, A. Angew. Chem., Int. Ed. 2011, 50,
ACS Paragon Plus Environment