J. Jayabharathi et al. / Spectrochimica Acta Part A 85 (2012) 31–37
37
a potential halfway between the two extremes red and dark blue
colour.
[3] U. Ucucu, N.G. Karaburun, I. Isikdag, II Farmaco 56 (2001) 285–290.
[4] K. Mahanalingam, M. Nethaji, P.K. Das, J. Mol. Struct. 378 (1996) 177–188.
[5] R. Koch, J.J. Finnerty, T. Bruhn, J. Phys. Org. Chem. 21 (2008) 954–962.
The HOMO is the orbital that primarily acts as an electron
donor and the LUMO is the orbital that largely acts as the electron
acceptor. The 3D plots of the frontier orbitals HOMO and LUMO
zole ring and phenanthroline ring, LUMO is located partly on the
phenanthroline ring and C6, C9 and C24 atoms of the imidazole
ring. The HOMO → LUMO transition implies that intramolecular
charge transfer takes place [34] within the molecule. The energy
gap (Eg) of dfppip has been calculated from the HOMO and LUMO
levels. The decrease in the HOMO and LUMO energy gap explains
the probable charge transfer (CD) taking place inside the chro-
mophore.
[6] G. Ye, W.P. Henry, C. Chen, A. Zhou, C.U. Pittman Jr., Tetrahedron Lett. 50 (2009)
2135–2139.
[7] D.M. Mitchell, P.J. Morgan, D.W. Pratt, J. Phys. Chem. A 112 (2008) 12597–12601.
[8] G. Fischer, W.D. Rudorf, E. Kleinpeter, Magn. Reson. Chem. 29 (1991) 204–206.
[9] E. Kleinpeter, A. Schulenburg, Tetrahedron Lett. 46 (2005) 5995–5997.
[10] E. Kleinpeter, A. Koch, B. Mikhova, B.A. Stamboliyska, T.M. Kolev, Tetrahedron
Lett. 49 (2008) 1323–1327.
[11] S.R. Flom, P.F. Barbara, Chem. Phys. Lett. 94 (1983) 488–493.
[12] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery, T. Vreven Jr., K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, P. Hratchian, J.B.
Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin,
R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P.
Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain,
O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q.
Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P.
Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A.
Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong,
C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford,
CT, 2004.
[13] M. Wagener, J. Sadowsky, J. Gasteiger, J. Am. Chem. Soc. 117 (1995) 7769–7775.
[14] Y. Yang, W.J. Zhang, X.M. Gao, Int. J. Quantum Chem. 106 (2006) 1199–1207.
[15] S. Rosepriya, A. Thiruvalluvar, J. Jayabharathi, M. Venkatesh Perumal, R.J.
Butcher, J.P. Jasinski, J.A. Golen, Acta Cryst. E67 (2011) o989.
[16] J. Jayabharathi, V. Thanikachalam, M. Venkatesh Perumal, N. Srinivasan, Spec-
trochim. Acta A 79 (2011) 236–244.
[17] J. Jayabharathi, V. Thanikachalam, M. Venkatesh Perumal, K. Saravanan, J. Flu-
oresc. (2011) 0878–883, doi:10 1007/s10895-011.
[18] Y. Marcus, Chem. Soc. Rev. 22 (1993) 409–416.
4. Conclusion
We have reported a new, simple and an efficient route to the
synthesis of biologically active heterocyclic substituted imidazole.
The presence of ˛ twist in this imidazole drops the fluorescence
quantum yield. The observed dipole moment and hyperpolariz-
ability can be explained by the reduced planarity caused by the
steric interaction between the two phenyl rings at C(23) and N(15)
atoms. Hence, the steric interaction must be reduced in order to
obtain larger ˇ0 values. From the physicochemical studies, it was
concluded that molecules of higher hyperpolarizability have larger
dipole moments used as potential NLO molecules. The adjusted
coefficient representing the acidity of the solvent, C␣ or CSA has
a negative value, suggesting that the absorption and fluorescence
bands shift to lower energies with the increasing acidity of the
solvent.
[19] C. Reichardt, Chem. Rev. 94 (1994) 2319–2358.
[20] E. Lippert, in: J.B. Birks (Ed.), Organic Molecular Photophysics, vol. 2, Wiley-
Interscience, Bristol, England, 1975, p. 1.
[21] K. Dimroth, C. Reichardt, Liebigs Ann. Chem. 727 (1969) 93–105.
[22] M.J. Kamlet, R.W. Taft, J. Am. Chem. Soc. 98 (1976) 377–383.
[23] J. Catalan, V. Lopez, P. Perez, J. Fluoresc. 6 (1996) 15–22.
[24] P. Gayathri, J. Jayabharathi, N. Srinivasan, A. Thiruvalluvar, R.J. Butcher, Acta
Crystallogr. E66 (2010) o1703.
[25] Y. Porter, K.M. OK, N.S.P. Bhuvanesh, P.S. Halasyamani, Chem. Mater. 13 (2001)
1910–1915.
Acknowledgments
[26] M. Narayana Bhat, S.M. Dharmaprakash, J. Cryst. Growth 236 (2002) 376–380.
[27] D. Steiger, C. Ahlbrandt, R. Glaser, J. Phys. Chem. B 102 (1998) 4257–4260.
[28] V. Crasta, V. Ravindrachary, R.F. Bharantri, R. Gonsalves, J. Cryst. Growth 267
(2004) 129–133.
[29] P. Wang, P. Zhu, W. Wu, H. Kang, C. Ye, Phys. Chem. Chem. Phys. 1 (1999)
3519–3525.
One of the authors Dr. J. Jayabharathi, Associate professor,
Department of Chemistry, Annamalai University is thankful to
Department of Science and Technology [No. SR/S1/IC-07/2007] and
University Grants commission (F. No. 36-21/2008 (SR)) for provid-
ing funds to this research study.
[30] S.F. Tayyari, S. Laleh, Z.M. Tekyeh, M.Z. Tabrizi, Y.A. Wang, H. Rahemi, Mol.
Struct. 827 (2007) 176–187.
[31] J. Marshal, Ind. J. Phys. 7213 (1988) 659–661.
[32] G. Wang, F. Lian, Z. Xie, G. Su, L. Wang, X. Jing, F. Wang, Synth. Met. 131 (2002)
1–5.
References
[1] J. Santos, E.A. Mintz, O. Zehnder, C. Bosshard, X.R. Bu, P. Gunter, Tetrahedron
Lett. 42 (2001) 805–808.
[33] M. Szafran, A. Komasa, E.B. Adamska, J. Mol. Struct. 827 (2007) 101–107.
[34] K. Fukui, T. Yonezawa, H. Shingu, J. Chem. Phys. 20 (1952) 722–725.
[2] T. Kamidate, T. Segawa, H. Watanabe, K. Yamaguchi, Anal. Sci. 5 (1989) 429–433.