Organic Process Research & Development
ARTICLE
13C NMR (100 MHz, CDCl3) δ 144.2, 140.1, 138.1, 132.6,
131.3, 130.4, 129.6, 128.4, 126.7, 125.9, 75.0, 21.2.
(6) (a) Wegner, J.; Ceylan, S.; Kirschning, A. Chem. Commun. 2011,
47, 4583. (b) Webb, D.; Jamison, T. F. Chem. Sci. 2010, 1, 675. (c) Wiles,
C.; Watts, P. Chem. Commun. 2011, 47, 6512. (d) Baxendale, I. R.;
Hayward, J. J.; Lanners, S.; Ley, S. V.; Smith, C. D. In Microreactors in
Organic Synthesis and Catalysis; Wirth, T., Ed.; Wiley: New York, 2008.
(e) Yoshida, J. I. Chem. Rec. 2010, 10, 332. (f) Nagaki, A.; Takizawa, E.;
Yoshida, J. Chem.—Eur. J. 2010, 16, 14149. (g) Mak, X. Y.; Laurino, P.;
Seeberger, P. H. Beilstein J. Org. Chem. 2009, 5, 19. (h) Razzaq, T.; Kappe,
C. O. Chem.—Asian J. 2010, 5, 1274. (i) Hessel, V. Chem. Eng. Technol.
2009, 32, 1655. (j) Hook, B. D. A.; Dohle, W.; Hirst, P. R.; Pickworth, M.;
Berry, M. B.; Booker-Milburn, K. I. J. Org. Chem. 2005, 70, 7558. (k)
Bogdan, A. R.; Poe, S. L.; Kubis, D. C.; Broadwater, S. J.; McQuade, D. T.
Angew. Chem., Int. Ed. 2009, 48, 8547. (l) Bogdan, A. R.; Sach, N. W. Adv.
Synth. Catal. 2009, 351, 849. (m) Brasholz, M.; Johnson, B. A.; Macdonald,
J. M.; Polyzos, A.; Tsanaktsidis, J.; Saubern, S.; Holmes, A. B.; Ryan,
J. H. Tetrahedron 2010, 66, 6445. (n) Nieuwland, P. J.; Koch, K.; van
Harskamp, N.; Wehrens, R.; van Hest, J. C. M.; Rutjes, F. Chem.—Asian
J. 2010, 5, 799. (o) Ahmed-Omer, B.; Brandt, J. C.; Wirth, T. Org. Biomol.
Chem. 2007, 5, 733. (p) Brandt, J. C.; Wirth, T. Beilstein J. Org. Chem.
2009, 5, 30. (r) Murphy, E. R.; Martinelli, J. R.; Zaborenko, N.; Buchwald,
S. L.; Jensen, K. F. Angew. Chem., Int. Ed. 2007, 46, 1734. (s) Chambers,
R. D.; Fox, M. A.; Sandford, G.; Trmcic, J.; Goeta, A. J. Fluor. Chem. 2007,
128, 29. (t) Fukuyama, T.; Rahman, T.; Kamata, N.; Ryu, I. Beilstein J. Org.
Chem. 2009, 5, 34. (u) Miller, P. W.; Jennings, L. E.; deMello, A. J.;
Gee, A. D.; Long, N. J.; Vilar, R. Adv. Synth. Catal. 2009, 351, 3260.
(v) Kobayashi, J.; Mori, Y.; Okamoto, K.; Akiyama, R.; Ueno, M.; Kitamori,
T.; Kobayashi, S. Science 2004, 304, 1305.
p-Tolyl(4-(trifluoromethyl)phenyl)methanol (27): 1H NMR
(400 MHz, CDCl3) δ 7.59 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 8.2 Hz,
2H), 7.24 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 5.82
(s, 1H), 2.50 (br s, 1H), 2.36 (s, 3H); 13C NMR (100 MHz,
CDCl3) δ 147.9, 147.8, 140.4, 138.0, 129.6, 126.8, 126.7, 125.5,
125.4, 75.7, 21.2; EI-MS [M+•] calculated for C14H13OCl:
232.0649, found: 232.0655.
(2-Chlorophenyl)(p-tolyl)methanol(28):1H NMR (400 MHz,
CDCl3) δ 7.65 (dd, J = 7.7, 1.4 Hz, 1H), 7.35 (dd, J = 7.9, 1.0 Hz,
1H), 7.33 (dd, J = 7.5, 1.0 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.23
(td, J = 7.6, 1.6 Hz, 1H), 7.16 (d, J = 7.9 Hz, 2H), 6.17 (s, 1H), 2.55
(br s, 1H), 2.36 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 141.2,
139.5, 137.6, 132.5, 129.6, 129.3, 128.7, 128.0, 127.1, 127.0, 72.6, 21.2;
EI-MS [M+•] calculated for C15H13OF3: 266.0913, found: 266.0921.
1
Pyridin-3-yl(p-tolyl)methanol (29): H NMR (400 MHz,
CDCl3) δ 8.44 (d, J = 1.4 Hz, 1H), 8.30 (dd, J = 4.7, 1.2 Hz, 1H),
7.68 (d, J = 7.9 Hz, 1H), 7.24À7.16 (m, 3H), 7.12 (d, J = 7.9 Hz,
2H), 5.76 (s, 1H), 5.12 (br s, 1H), 2.32 (s, 3H); 13C NMR (100
MHz, CDCl3) δ 148.0, 147.8, 140.6, 140.3, 137.6, 134.6, 129.4,
126.6, 123.6, 73.6, 21.2; ESI-HRMS [M + H+] calculated for
C13H14NO: 200.1075, found: 200.1066.
1
Pyridin-2-yl(p-tolyl)methanol (30): H NMR (400 MHz,
CDCl3) δ 8.55 (d, J = 4.8 Hz, 1H), 7.61 (td, J = 7.7, 1.7 Hz, 1H),
7.27 (d, J = 8.0 Hz, 2H), 7.21À7.12 (m, 4H), 5.73 (s, 1H), 5.04
(br s, 1H), 2.33 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.3,
147.9, 140.5, 137.6, 136.9, 129.4, 127.1, 122.4, 121.4, 75.0, 21.2;
ESI-HRMS [M + H+] calculated for C13H14NO: 200.1075,
found: 200.1082.
(7) (a) Wakami, H.; Yoshida J. Org. Process Res. Dev. 2005,
9, 787–791. (b) Kim, H.; Nagaki, A.; Yoshida, J. Nat. Commun. 2011,
2, 1–6. (c) Nagaki, A.; Yamada, S.; Doi, M.; Tomida, Y.; Takabayashi, N.;
Yoshida, J. Green Chem. 2011, 13, 1110–1113.
(8) (a) Carter, C. F.; Lange, H.; Ley, S. V.; Baxendale, I. R.;
Wittkamp, B.; Goode, J. G.; Gaunt, N. L. Org. Process Res. Dev. 2010, 14,
393–404. (b) Mozharov, S.; Nordon, A.; Littlejohn, D.; Wiles, C.; Watts,
P.; Dallin, P.; Girkin, J. M. J. Am. Chem. Soc. 2011, 133, 3601–3608.
(c) Qian, Z.; Baxendale, I. R.; Ley, S. V. Chem.—Eur. J. 2010, 16, 12342–
12348.
’ ASSOCIATED CONTENT
S
Supporting Information. This material is available free
b
(9) (a) Riva, E.; Gagliardi, S.; Martinelli, M.; Passarella, D.; Vigo, D.;
Rencurosi, A. Tetrahedron 2010, 66, 3242–3247. (b) Polyzos, A.;
O’Brien, M.; Petersen, T. P.; Baxendale, I. R.; Ley, S. V. Angew. Chem.,
Int. Ed. 2010, 50, 1190–1193.
’ AUTHOR INFORMATION
(10) (a) Rieke, R. D. Science 1989, 246, 1260–1264. (b) Burns, T. P.;
Rieke, R. D. J. Org. Chem. 1987, 52, 3674–3680. (c) Lee, J.; Velarde-
Ortiz, R.; Guijarro, A.; Wurst, J. R.; Rieke, R. D. J. Org. Chem. 2000,
65, 5428–5430.
Corresponding Author
(11) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.;
Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem., Int. Ed. 2003,
42, 4302–4320.
(12) (a) Normant, J. F.; Alexakis, A. Synthesis 1981, 841–870. (b)
Rao, S. A.; Knochel, P. J. Am. Chem. Soc. 1991, 113, 5735–5741.
(13) (a) Trost, B. M. Chem.—Eur. J. 1998, 4, 2405–2412.
(b) Mattesonin, D. S. The Chemistry of the Metal-Carbon Bond, Vol. 4,
(Ed.: Hartley, F. R.), Wiley, New York, 1987, 307À409.
’ ACKNOWLEDGMENT
We thank Georganics Ltd. (PK), the German Academic
Exchange Service DAAD (T.B. and A.M.) and the BP Endow-
ment (S.V.L) for financial support and Mettler Toledo for useful
discussions.
’ REFERENCES
(14) (a) Zhang, M.-X.; Eaton, P. E. Angew. Chem., Int. Ed. 2002,
41, 2169–2171. (b) Hoppe, D.; Heuse, T. Angew. Chem., Int. Ed. 1997,
36, 2282–2316. (c) Johnson, T. A.; Curtis, M. D.; Beak, P. Org. Lett.
2002, 4, 2747–2749. (d) Beak, P.; Anderson, D. R.; Curtis, M. D.;
Laumer, J. M.; Pippel, D. J.; Weisenburger, G. A. Acc. Chem. Res. 2000,
33, 715–727. (e) Norsikian, S.; Marek, I.; Normant, J.-F. Tetrahedron
Lett. 1997, 38, 7523–7526. (f) Metallinos, C.; Snieckus, V. Org. Lett.
2002, 4, 1935–1938. (g) Snieckus, V. Chem. Rev. 1990, 90, 879–933.
(15) For magnesium insertion see: (a) Piller, F. M.; Appukkuttan, P.;
Gavryushin, A.; Helm, M.; Knochel., P. Angew. Chem., Int. Ed. 2008,
47, 6802–6806. (b) Krasovskiy, A.; Krasovskaya, V.; Knochel, P. Angew.
Chem., Int. Ed. 2006, 45, 2958–2961. (c) Lin, W.; Baron, O.; Knochel, P.
Org. Lett. 2006, 8, 5673–5676.
(1) (a) Grignard, V. C. R. Acad. Sci. 1900, 130, 1222–1325.
(2) (a) Silverman, G. S.; Rakita, P. E., Eds. Handbook of Grignard
Reagents; Marcel Dekker: New York, NY, 1996. (b) Wakefield, B. J.
Organomagnesium Methods in Organic Synthesis; Academic Press: London,
1995. (c) Richey, H. G., Jr., Ed. Grignard Reagents: New Development;
Wiley: New York, NY, 1999. (d) Boudier, A.; Bromm, L. O.; Lotz, M.;
Knochel, P. Angew. Chem., Int. Ed. 2000, 39, 4414–4435.
(3) (a) Knochel, P.; Leuser, H.; Gong, Z.-L.; Perrone, S.; Kneisel,
F. F., Eds. Handbook of Functionalized Organometallics; Wiley-VCH:
Weinheim, 2005, 251. (b) Knochel, P.; Millot, N.; Rodriguez, A. L.;
Tucker, C. E. Organic Reactions; Wiley: New York, 2001.
(4) Garst, J. F.; Soriaga, M. P. Coord. Chem. Rev. 2004, 248, 623–652.
(5) Harrington, P. J.; Lodewijk, E. Org. Process Res. Dev. 1997, 1,
72–76.
(16) For Grignard exchange reaction see: ( a) Krasovskiy, A.; Knochel,
P. Angew. Chem., Int. Ed. 2004, 43, 3333–3336. (b) Krasovskiy, A.;
1112
dx.doi.org/10.1021/op200275d |Org. Process Res. Dev. 2012, 16, 1102–1113