and in the NMR spectra of 16, individual diastereomers were not
observed. Deprotection of 16 gave GSL-1C.
References
1 A. Bendelac, P. B. Savage, P. B. and L. Teyton, Annual Rev. Immunol.,
2007, 25, 297–336.
2 A. Balato, D. Unutmaz and A. A. Gaspari, J. Invest. Dermatol., 2009,
129, 1628–1642.
3 M. Kronenberg and Y. Kinjo, Curr. Opin. Immunol., 2009, 21, 391–396.
4 C. Guillonneau, J. D. Mintern, F. X. Hubert, A. C. Hurt, G. S. Besra,
S. Porcelli, I. G. Barr, P. C. Doherty, D. I. Godfrey and S. J. Turner,
Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 3330–3335.
5 P. B. Savage, A. Bendelac and L. Teyton, Chem. Soc. Rev., 2006, 35,
771–779.
6 T. Kawano, J. Cui, Y. Koezuka, I. Toura, Y. Kaneko, K. Motoki, H.
Ueno, R. Nakagawa, H. Sato, E. Kondo, H. Koseki and M. Tanguchi,
Science, 1997, 278, 1626–1629.
Stimulation of NKT cells by glycolipids depends upon presen-
tation by the protein CD1d on antigen presenting cells. Dendritic
cells are the primary presenters of glycolipids to NKT cells,1 and
these and NKT cells are found in relatively high abundance in
the spleen. Murine (B6 mice) splenocytes were used to measure
NKT cell stimulation by the synthesized glycolipids. Stimulation
is quantified in terms of cytokine release, and proinflammatory
and immunomodulatory cytokines are typified by IFN-g and IL-
4, respectively.20 The relative amounts of these cytokines released
by NKT cells determine the types of immune responses that follow
stimulation. Cytokine release was measured using quantitative
ELISA.
7 Y. Kinjo, D. Wu, G. Kim, G.-W. Xing, M. A. Poles, D. D. Ho, M. Tsuji,
K. Kawahara, C.-H. Wong and M. Kronenberg, Nature, 2005, 434,
520–525.
As expected, stimulation of proinflammatory cytokine IFN-
g by KRN7000 occurred at low concentrations, and as has
been observed previously, stimulation by glycolipids from Sphin-
gomonas required higher concentrations (Fig. 3A). Nevertheless,
substantial responses were observed at 100 ng mL-1. Interestingly,
the ceramide structure of the glycolipids had only a minor
effect on NKT cell stimulation (compare GSL-1A, GSL-1B,
GSL-1C, and 1). The greatest impact on IFN-g release was the
sugar stereochemistry; compounds with gluco stereochemistry
were more stimulatory than those with galacto stereochemistry
(compare GSL1A with GSL1A¢ and 1 with 2).
The same trend was seen with IL-4 release (Fig. 3B); that
is, among the Sphingomonas glycolipids, we found glycolipids
with gluco stereochemistry to be more stimulatory than galacto.
Glycolipids with shorter acyl chains than those found in KRN7000
are associated with higher amounts of IL-4 release, in relation to
IFN-g release.25 Comparison of the impact of the ceramide in 1
and that found in GSL-1B and GSL-1C suggest that there may
be a greater propensity for IL-4 production with the latter two
glycolipids due to their relatively short acyl chains.
8 J. Mattner, K. L. DeBord, R. D. Goff, C. Cantu, D. Zhou, P. Saint-
Mezard, V. Wang, Y. Gao, N. Yin, K. Hoebe, O. Schneewind, N. Ismail,
D. Walker, B. Buetler, L. Teyton, P. B. Savage and A. Bendelac, Nature,
2005, 434, 525–529.
9 Y. Kinjo, E. Tupin, D. Wu, M. Fujio, R. Garcia-Navarro, M. R.
Benhnia, D. M. Zajonc, G. Ben-Manachem, G. D. Ainge, G. F. Painter,
A. Khurana, K. Hoebe, S. M. Behar, B. Buetler, I. A. Wilson, Tsuji, T.
J. Sellati, C.-H. Wong and M. Kronenberg, Nature Immunol., 2006, 7,
978–986.
10 D. Zhou, J. Mattner, C. Cantu III, N. Yin, Y. Gao, Y. Sagiv, K Hudspeth,
Y. Wu, S. Teneberg, Wang, R. Proia, S. B. Levery, P. B. Savage, L. Teyton
and A. Bendelac, Science, 2004, 306, 1786–1789.
11 J. D. Silk, M. Salio, B. G. Reddy, D. Shepherd, U. Gileadi, J. Brown, S.
H. Masri, P. Pozella, G. Ritter, G. S. Besra, E. Y. Jones, R. R. Schmidt
and V. Cerundolo, J. Immunol., 2008, 180, 6452–6456.
12 T. Natori, Y. Koezuka and T. Higa, Tetrahedron Lett., 1993, 34, 5591–
5592.
13 M. Morita, K. Motoki, K. Akimoto, T. Natori, T. Sakai, E. Sawa, K.
Yamaji, Y. Koezuka, E. Kobayashi and H. Fukushima, J. Med. Chem.,
1995, 38, 2176–2187.
14 K. Kawahara, H. Kuraishi and U. Za¨hringer, J. Industrial Microbiol.
& Biotech., 1999, 23, 408.
15 M. S. Giao, N. F. Azevedo, S. A. Wilks, M. J. Vieira and C. J. Keevil,
BMC Microbiol., 2011, 11, 57.
16 S. T. Kelly, U. Theisen, L. T. Angenent, A. S. Amand and N. R. Pace,
Applied Environ. Microbiol., 2004, 70, 4187–4192.
Few “natural” antigens for NKT cells have been identified, and
an understanding of how these antigens impact human health re-
quires elucidation of relative stimulatory properties of glycolipids
found in sources of these antigens. We have demonstrated that the
more predominant glycolipid found in Sphingomonas spp. (GSL-
1A) stimulates stronger NKT cell responses than its isomer (GSL-
1A¢) and that the stereoselective recognition of these glycolipids
is independent of ceramide structure. GSL-1B and GSL-1C are
less predominant than GSL-1A, but both stimulate NKT cell
responses comparable to GSL-1A. These results shed additional
light on structural requirements for NKT cell stimulation and may
prove useful in the development of novel NKT cell antigens and
adjuvants.
17 C. Fahlgren, G. Bratbak, R. A. Sandaa, R. Thyrhaug and U. L. Zweifel,
Aerobiologia, 2011, 27, 107–120.
18 J. Mattner, P. B. Savage, P. Leung, S. S. Oertelt, V. Wang, O. Trivedi,
S. T. Scanlon, L. Teyton, J. Hart, W. M. Ridgway, L. S. Wicker, E.
M. Gershwin and A. Bendelac, Cell Host Microbe, 2008, 3, 304–
315.
19 E. H. Meyer, S. Goya, O. Akbari, G. J. Berry, P. B. Savage, M.
Kronenberg, T. Nakayama, R. H. DeKruyff and D. T. Umetsu, Proc.
Natl. Acad. Sci. U. S. A., 2006, 103, 2782–2787.
20 X. Long, S. Deng, Z. Zang, J. Mattner, D. Zhou, N. McNary, R. D.
Goff, L. Teyton, A. Bendelac and P. B. Savage, Nature Chem. Biol.,
2007, 3, 559–564.
21 Y. Kinjo, B. Pei, S. Sufali, R. Raju, S. K. Richardson, M. Imamura, M.
Fujio, D. Wu, A. Khurana, K. Kawahara, C.-H. Wong, A. R. Howell,
P. H. Seeberger and M. Kronenberg, Chem. Biol., 2008, 15, 654–
664.
22 T. Naka, N. Fujiwara, E. Yabuuchi, M. Doe, K. Kobayashi, Y. Kato
and I. Yano, J. Bacteriol., 2000, 182, 2660–2663.
23 W. Pilgrim and P. V. Murphy, Org. Lett., 2009, 11, 939–942.
24 N. Okamoto, O. Kanie, Y.-Y. Huang, E. Fujii, H. Watanabe and M.
Shimamura, Chem. Biol., 2005, 12, 677–683.
25 R. D. Goff, Y. Gao, J. Mattner, D. Zhou, N. Yin, C. Cantu III, L.
Teyton, A. Bendelac and P. B. Savage, J. Am. Chem. Soc., 2004, 126,
13602–13603.
Acknowledgements
Financial support from the National Institutes of Health (NIAID,
P01 AI053725) is gratefully acknowledged. We thank Michael E.
Fusakio for aiding in measuring cytokine release from splenocytes.
7662 | Org. Biomol. Chem., 2011, 9, 7659–7662
This journal is
The Royal Society of Chemistry 2011
©