In summary, we successfully developed conveniently accessible
novel amine–imine nickel precursors that can catalyze ethylene
polymerization to produce highly branched polymers in a living
fashion. For complex 1 containing 2,6-diisopropyl substituents on
amine and imine moieties, a stationary polymerization kinetics
proves no occurrence of catalyst deactivation within 120 minutes at
35 1C, and narrow-dispersed polyethylene (PDI o 1.10) with high
molecular weight can be produced at room temperature or above
in the presence of MMAO or Et2AlCl. Living polymerization of
ethylene using a thermally robust catalyst provides a viable access
to precise synthesis of monodisperse PE with various branch
topology structures by changing reaction temperature, corres-
ponding block copolymers, and functionalized PE. Further
optimization of variations in amine–imine frameworks will
enable improvements in polymerization control.
Fig. 3 (a) Plots of Mn (’,m,E) and Mw/Mn (PDI) (&,n,B) as a function
of polymerization time using 1/MMAO at 20 1C or using 1/Et2AlCl at
35 and 50 1C (polymerization conditions: 3 psig, 10 mmol Ni, 200 equiv.
activator). (b) GPC traces at different times using a light scattering detector.
detector (ESIw) as a function of polymerization time (Fig. 3a) also
illustrate that Mn grows linearly with polymerization time, and
Mw/Mn values are below 1.10 within 2 hours, proving living
polymerizations with long lifetime using 1/MMAO at 20 1C and
1/Et2AlCl at 35 1C. PE with an Mn of 2 ꢁ 105 g molꢀ1 is formed
after 2 hours using 1/MMAO, and its molecular weight is still
precisely controlled (PDI = 1.04) (ESIw). Polyethylene-block-
polyhexene copolymers (PE-b-PH) with narrow PDI of B1.05
are also successfully synthesized under the adopted living
polymerization conditions by subsequent copolymerization
(ethylene: 0.25 h, hexene: 6 h) (ESIw), further supporting that
amine–imine nickel 1 species is long-standing and shows living
nature for olefin polymerization. To the best of our knowledge,
this is the first report on living polymerization of ethylene above
room temperature with a late transition metal catalyst. At the
higher temperature (50 1C), Mn grows linearly with time in the
early stages of polymerization (B30 min), but then the slope
begins to decrease and PDI also becomes broad.
The financial supports from NSFC (Projects 20974125,
20734004 and 21174164), and the Fundamental Research
Funds for the Central Universities (Project 10lgpy10) are
gratefully acknowledged.
Notes and references
1 (a) G. J. Domski, J. M. Rose, G. W. Coates, A. D. Bolig and
M. Brookhart, Prog. Polym. Sci., 2007, 32, 30; (b) H. Makio,
H. Terao, A. Iwashita and T. Fujita, Chem. Rev., 2011, 111, 2363.
2 G. W. Coates, P. D. Hustad and S. Reinartz, Angew. Chem., Int.
Ed., 2002, 41, 2236.
+
3 R. Mulhaupt, Macromol. Chem. Phys., 2003, 204, 289.
4 (a) S. M. Yu and S. Mecking, J. Am. Chem. Soc., 2008, 130, 13204;
(b) D. H. Camacho, E. V. Salo, J. W. Ziller and Z. Guan, Angew.
Chem., Int. Ed., 2004, 43, 1821; (c) D. H. Camacho and Z. Guan,
Macromolecules, 2005, 38, 2544.
5 (a) S. D. Ittel, L. K. Johnson and M. Brookhart, Chem. Rev., 2000,
100, 1169; (b) S. Mecking, Coord. Chem. Rev., 2000, 203, 325;
(c) L. K. Johnson, C. M. Killian and M. Brookhart, J. Am. Chem.
Soc., 1995, 117, 6414; (d) L. K. Johnson, S. Mecking and
M. Brookhart, J. Am. Chem. Soc., 1996, 118, 267.
6 (a) E. Cherian, J. M. Rose, E. B. Lobkovsky and G. W. Coates, J. Am.
Chem. Soc., 2005, 127, 13770; (b) J. Merna, J. Cihlar, M. Kucera,
A. Deffieux and H. Cramail, Eur. Polym. J., 2005, 41, 303; (c) H. Gao,
J. Pan, L. Guo, D. Xiao and Q. Wu, Polymer, 2011, 52, 130; (d) H. Gao,
X. Liu, Y. Tang, J. Pan and Q. Wu, Polym. Chem., 2011, 2, 1398.
7 (a) A. C. Gottfried and M. Brookhart, Macromolecules, 2001, 34, 1140;
(b) A. C. Gottfried and M. Brookhart, Macromolecules, 2003, 36, 3085;
(c) K. Zhang, Z. Ye and R. Subramanian, Macromolecules, 2008,
41, 640; (d) Y. Zhang and Z. Ye, Chem. Commun., 2008, 1178.
8 (a) J. D. Azoulay, R. S. Rojas, A. V. Serrano, H. Ohtaki,
G. B. Galland, G. Wu and G. C. Bazan, Angew. Chem., Int. Ed.,
2009, 48, 1089; (b) J. D. Azoulay, Y. Schneider, G. B. Galland and
G. C. Bazan, Chem. Commun., 2009, 6177.
9 (a) L. Deng, P. Margl and T. Ziegler, J. Am. Chem. Soc., 1997,
119, 1094; (b) L. Deng, T. K. Woo, L. Cavallo, P. M. Margl and
T. Ziegler, J. Am. Chem. Soc., 1997, 119, 6177; (c) D. J. Tempel,
L. K. Johnson, R. L. Huff, P. S. White and M. Brookhart, J. Am.
Chem. Soc., 2000, 122, 6686.
10 (a) F. Liu, H. Hu, Y. Xu, L. Guo, S. Zai, K. Song, H. Gao, L. Zhang,
F. Zhu and Q. Wu, Macromolecules, 2009, 42, 7789; (b) L. Guo,
H. Gao, L. Zhang, F. Zhu and Q. Wu, Organometallics, 2010, 29, 2118;
(c) C. S. Popeney and Z. Guan, Macromolecules, 2010, 43, 4091.
11 S. Zai, F. Liu, H. Gao, C. Li, G. Zhou, S. Cheng, L. Guo,
L. Zhang, F. Zhu and Q. Wu, Chem. Commun., 2010, 46, 4321.
12 F. Yang, Y. Chen, Y. Lin, K. Yu, Y. Liu, Y. Wang, S. Liu and
J. Chen, Dalton Trans., 2009, 1243.
It is informative at this point to compare different behaviors
of ethylene polymerization using amine–imine nickel 1 and a
classic a-diimine nickel 4 (Scheme 1), which have seemingly
similar metal–ligand frameworks. The catalytic system 4/MMAO
has been known to polymerize ethylene in a nonliving fashion4,5
and herein produces a PE with a PDI value of 1.73 under the
same conditions (entry 15). This molecular weight distribution is
much broader than that of PE produced by amine–imine nickel 1
(entry 1), although the higher catalytic activity is achieved by 4.
The living catalytic ethylene polymerization behavior of
amine–imine nickel 1 not only arises from the effective axially
steric block, but also may be attributed to the weak Lewis base of
amine with N-aryl (ArNH), which can result in retardation of
chain transfer to the ethylene monomer and the alkylaluminium
cocatalyst.5c,d
Like the PEs produced by a-diimine nickel,5 the PEs produced
by these amine–imine nickel catalysts are also highly branched
products with methyl branches predominating as revealed by
13C NMR spectra (cf. ESIw).14 Various branches originate from a
chain walking process involving a b-agostic nickel complex.9,15
The PEs obtained under living polymerization conditions are
branched, suggesting that chain termination through b-H
elimination of the b-agostic nickel complex cannot occur. This
may be explained as a quite low barrier to chain isomerization
and an extremely unstable hydride–olefin nickel complex from
thermodynamic aspect.9
13 (a) R. E. Murray, WO 2003051935, 2003; (b) M. Bhadbhade, G. K. B.
Clentsmith and L. D. Field, Organometallics, 2010, 29, 6509.
14 (a) G. B. Galland, R. F. de Souza, R. S. Mauler and F. F. Nunes,
Macromolecules, 1999, 32, 1620; (b) F. A. Kunrath, E. F. Monta,
O. L. Casagrande, R. S. Mauler and R. F. de Souza, Macromol.
Chem. Phys., 2002, 203, 2407.
15 V. M. Mohring and G. Fink, Angew. Chem., Int. Ed., 1985, 24, 1001.
¨
c
3314 Chem. Commun., 2012, 48, 3312–3314
This journal is The Royal Society of Chemistry 2012