This work was supported financially by the University of
Berne, the European Union FP7-ITN-238434 and the Swiss
National Science Foundation.
Notes and references
1 K. H. Bleicher, H. J. Bohm, K. Muller and A. I. Alanine, Nat. Rev.
¨
Drug Discovery, 2003, 2, 369–378.
¨
2 (a) N. Singh, R. Guha, M. A. Giulianotti, C. Pinilla,
R. A. Houghten and J. L. Medina-Franco, J. Chem. Inf. Model.,
2009, 49, 1010–1024; (b) J. L. Reymond, R. Van Deursen,
L. C. Blum and L. Ruddigkeit, Med. Chem. Commun., 2010, 1,
30–38.
3 (a) J. A. Robinson, ChemBioChem, 2009, 10, 971–973;
(b) M. Rubinstein and M. Y. Niv, Biopolymers, 2009, 91, 505–513.
4 (a) C. L. Stevenson, Curr. Pharm. Biotechnol., 2009, 10, 122–137;
(b) N. H. D. Jakube, Peptides: Chemistry and Biology, Wiley-VCH,
2002, pp. 403–424.
5 (a) C. J. White and A. K. Yudin, Nat. Chem., 2011, 3, 509–524;
(b) S. Jiang, Z. Li, K. Ding and P. P. Roller, Curr. Org. Chem.,
2008, 12, 1502–1542; (c) C. Blackburn and S. A. Kates, Methods
Enzymol., 1997, 289, 175–198.
6 (a) L. Cascales and D. J. Craik, Org. Biomol. Chem., 2010, 8,
5035–5047; (b) V. Goncalves, B. Gautier, C. Garbay, M. Vidal and
N. Inguimbert, J. Pept. Sci., 2008, 14, 767–772; (c) S. C.
Shankaramma, Z. Athanassiou, O. Zerbe, K. Moehle, C. Mouton,
F. Bernardini, J. W. Vrijbloed, D. Obrecht and J. A. Robinson,
ChemBioChem, 2002, 3, 1126–1133.
7 (a) Y. Sako, Y. Goto, H. Murakami and H. Suga, ACS Chem.
Biol., 2008, 3, 241–249; (b) C. Chatterjee, M. Paul, L. Xie and
W. A. van der Donk, Chem. Rev., 2005, 105, 633–684; (c) A. A.
Aimetti, R. K. Shoemaker, C. C. Lin and K. S. Anseth, Chem.
Commun., 2010, 46, 4061–4063.
8 C. E. Schafmeister, J. Po and G. L. Verdine, J. Am. Chem. Soc.,
2000, 122, 5891–5892.
Fig. 4 NMR structures of bicyclic peptides, showing 10 lowest energy
9 (a) J. M. Beierle, W. S. Horne, J. H. van Maarseveen, B. Waser,
J. C. Reubi and M. R. Ghadiri, Angew. Chem., Int. Ed., 2009, 48,
4725–4729; (b) S. Punna, J. Kuzelka, Q. Wang and M. G. Finn,
Angew. Chem., Int. Ed., 2005, 44, 2215–2220.
NMR model structures from simulated annealing refinements.
10 (a) L. C. Blum and J. L. Reymond, J. Am. Chem. Soc., 2009, 131,
8732–8733; (b) M. J. Wester, S. N. Pollock, E. A. Coutsias,
T. K. Allu, S. Muresan and T. I. Oprea, J. Chem. Inf. Model.,
2008, 48, 1311–1324.
11 T. Darbre and J. L. Reymond, Acc. Chem. Res., 2006, 39,
925–934.
12 (a) J. W. Taylor, Biopolymers, 2002, 66, 49–75; (b) T. Karskela,
P. Virta and H. Lonnberg, Curr. Org. Synth., 2006, 3, 283–311;
¨
(c) Y. Sako, J. Morimoto, H. Murakami and H. Suga, J. Am.
Chem. Soc., 2008, 130, 7232–7234; (d) C. Heinis, T. Rutherford,
S. Freund and G. Winter, Nat. Chem. Biol., 2009, 5, 502–507.
13 (a) M. Teixido, M. Altamura, L. Quartara, A. Giolitti, C. A. Maggi,
E. Giralt and F. Albericio, J. Comb. Chem., 2003, 5, 760–768;
(b) R. Hirschmann, W. Q. Yao, B. Arison, L. Maechler, P. A.
Sprengeler and A. B. Smith, Tetrahedron Lett., 1996, 37,
5637–5640.
14 (a) J. C. Tolle, M. A. Staples and E. R. Blout, J. Am. Chem. Soc.,
1982, 104, 6883–6884; (b) C. Bracken, J. Gulyas, J. W. Taylor and
J. Baum, J. Am. Chem. Soc., 1994, 116, 6431–6432; (c) R. Oliva,
L. Falcigno, G. D’Auria, M. Saviano, L. Paolillo, G. Ansanelli and
G. Zanotti, Biopolymers, 2000, 53, 581–595.
15 D. Weininger, J. Chem. Inf. Comput. Sci., 1988, 28, 31–36.
16 D. A. Case, T. E. Cheatham, 3rd, T. Darden, H. Gohlke, R. Luo,
K. M. Merz, Jr., A. Onufriev, C. Simmerling, B. Wang and
R. J. Woods, J. Comput. Chem., 2005, 26, 1668–1688.
17 (a) W. H. Sauer and M. K. Schwarz, J. Chem. Inf. Comput. Sci.,
2003, 43, 987–1003; (b) A. Nicholls, G. B. McGaughey, R. P.
Sheridan, A. C. Good, G. Warren, M. Mathieu, S. W. Muchmore,
S. P. Brown, J. A. Grant, J. A. Haigh, N. Nevins, A. N. Jain and
B. Kelley, J. Med. Chem., 2010, 53, 3862–3886.
18 (a) R. M. Catalioto, M. Criscuoli, P. Cucchi, A. Giachetti,
D. Gianotti, S. Giuliani, A. Lecci, A. Lippi, R. Patacchini,
L. Quartara, A. R. Renzetti, M. Tramontana, F. Arcamone and
C. A. Maggi, Br. J. Pharmacol., 1998, 123, 81–91; (b) L. Quartara
and M. Altamura, Curr. Drug Targets, 2006, 7, 975–992.
Fig. 5 Molecular dimensions of homodetic peptides of 5–10 amino
acids (MW = 1010 ꢁ 187 Da). The fraction of total variance of atomic
coordinates for all non-H atoms in the 3D structure is shown along the
principal components PC2 and PC3. Reference segments of a-helices
and b-sheets were extracted from the crystal structures of proteins in
the Protein Data Bank. See ESIw for details on the peptide virtual
library generation and content (Table S7 and S8, ESIw).
including a Phase II clinical candidate18 (Table S1, ESIw), the
majority of bicyclic peptides should be conformationally rigid
and well suited to engage in molecular interactions with protein
targets. Future experiments will address adapting the protecting
group strategy to allow the use of amino acids with protected side
chains at the variable positions, and exploring the biological
potential of bicyclic homodetic peptides.
c
12636 Chem. Commun., 2011, 47, 12634–12636
This journal is The Royal Society of Chemistry 2011