Inorganic Chemistry
Communication
X-ray crystallographic data in CIF format, synthetic and
spectroscopic details and data, computational details, and
solid-state structures. This material is available free of charge via
Table 2. Mulliken Spin Densities Obtained from DFT
Calculations
a
b
b
Co(1)
Rh(2)
Ir(3)
Ru(11)
Os(12)
M
1.167
−0.042
−0.032
−0.025
0.746
0.233
0.732
0.198
0.836
0.135
0.786
0.129
P(total)
Pmax
AUTHOR INFORMATION
Corresponding Author
■
0.170
0.161
0.086
0.073
PPMe
−0.009
−0.009
−0.009
−0.005
3
a
P(total) represents the total spin density from the P atoms of the
[SiPiPr3] scaffold. Pmax represents the values from the phosphine
ACKNOWLEDGMENTS
■
b
possessing the greatest spin density. Values from ref 7.
This work was supported by the NSF (Grant CHE-0750234).
Charlene Tsay and Larry Henling are acknowledged for
crystallographic assistance.
for 1−3, respectively. While small in 1, delocalization of the
spin density onto the phosphines is evident for 2 and 3, with
values of 0.23 and 0.19 e− distributed among the P atoms of the
[SiPiPr3] scaffold. The greater spin delocalization for 2 and 3
relative to 1 is likely due to the greater covalency of the M−P
bonds in the former. In contrast, the apical PMe3 P atom
possesses negligible spin for all three complexes. The small
degree of delocalization onto the phosphines in 1 may also
explain its featureless 77 K spectrum. Importantly, one P atom
in 2 and 3 possesses a notably greater value (0.17 e− for 2 and
0.16 e− for 3) relative to the other two P atoms. This P atom
lies opposite the largest P−M−P angle in the equatorial plane
of these complexes, and this observation is consistent with the
EPR simulations that assign a large hyperfine coupling to this
atom. The numbers are roughly double the value observed for
the P atom with the largest spin densities in 11 (0.09 e−) and
12 (0.07e−) and suggest a greater spin delocalization for the
group 9 complexes, in agreement with the EPR parameters
(Table 1). Thus, both the EPR simulations and DFT
calculations are qualitatively consistent and point to the
metalloradical character for 1−3, with a greater degree of
spin leakage for the second- and third-row derivatives 2 and 3.
The frontier orbitals of complexes 1−3 are also of interest.
For all three complexes, the LUMO is ligand-based and the
REFERENCES
■
(1) de Bruin, B.; Hetterscheid, D. G. H.; Koekkoek, A. J. J.;
Grutzmacher, H. Prog. Inorg. Chem. 2007, 55, 247.
(2) Cui, W.; Li, S.; Wayland, B. B. J. Organomet. Chem. 2007, 692,
̈
3198.
(3) (a) Sherry, A. E.; Wayland, B. B. J. Am. Chem. Soc. 1990, 112,
1259. (b) Wayland, B. B.; Ba, S.; Sherry, A. E. J. Am. Chem. Soc. 1991,
113, 5305.
(4) Poli, R. Angew. Chem., Int. Ed. 2010, 49, 2. (b) Wayland, B. B.; Ba,
S.; Sherry, A. E. J. Am. Chem. Soc. 1991, 113, 5305.
(5) (a) Palmer, J. H.; Mahammed, A.; Lancaster, K. M.; Gross, Z.;
Gray, H. B. Inorg. Chem. 2009, 48, 9308. (b) Zhai, H.; Bunn, A.;
Wayland, B. Chem. Commun. 2001, 1294. (c) Deblon, S.; Liesum, L.;
Harmer, J.; Schonberg, H.; Schweiger, A.; Grutzmacher, H. Chem.
̈
̈
Eur. J. 2002, 8, 601.
(6) (a) Mankad, N. P.; Whited, M. T.; Peters, J. C. Angew. Chem., Int.
Ed. 2007, 129, 5768. (b) Whited, M. T.; Mankad, N. P.; Lee, Y.;
Oblad, P. F.; Peters, J. C. Inorg. Chem. 2009, 48, 2507.
(7) Takaoka, A.; Gerber, L. C. H.; Peters, J. C. Angew. Chem., Int. Ed.
2010, 49, 4088.
(8) τ = (b − a)/60, where b and a represent the two largest angles.
See: Addison, A. W.; Rao, T. N.; Van Rijn, J. J.; Verschoor, G. C. J.
Chem. Soc., Dalton Trans. 1984, 1349.
(9) Bianchini, C.; Meli, A.; Peruzzini, M.; Vacca, A. Organometallics
1990, 9, 360.
2
2
SOMO and SOMO−1 are of dxy/dx −y parentage (see the SI).
While the LUMO and SOMO energy difference remains
relatively constant, the SOMO and SOMO−1 energy difference
increases from 1 to 3, from 5.7 to 16.9 kcal/mol. Observation
of the largest g anisotropy in complex 1, despite the smaller
spin−orbit coupling constant for Co relative to Rh and Ir, is
thus not only due to the greater spin density on the metal
center, as suggested by DFT calculations, but also of greater
admixture of the SOMO with filled orbitals.
(10) Some negative spin due to spin polarization is observed on the
silicon (−0.09 e−).
(11) Representative examples: (a) Danopoulos, A. A.; Wilkinson, G.;
Hussain-Bates, B.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1992,
3165. (b) García, M. P.; Jimen
Organometallics 1993, 12, 4660. (c) García, M. P.; Jimen
́
ez, M. V.; Oro, L. A.; Lahoz, F. J.
́
ez, M. V.; Oro,
L. A.; Lahoz, F. J.; Casas, J. M.; Alonso, P. J. Organometallics 1993, 12,
3257. (d) Dunbar, K. R.; Haefner, S. C. Organometallics 1992, 11,
1431. (e) Connely, N. G.; Emslie, D. J. H.; Metz, B.; Orpen, A. G.;
Quayle, M. J. Chem. Commun. 1996, 2289. (f) Dzik, W. I.; Arruga, L.
F.; Siegler, M. A.; Spek, A. L.; Reek, J. N. H.; de Bruin, B.
Organometallics 2011, 30, 1902. (g) Connely, N. G.; Emslie, D. J. H.;
Metz, B.; Orpen, A. G.; Quayle, M. J. Chem. Commun. 1996, 2289.
In conclusion, a series of d7 complexes of group 9 metals has
been synthesized and thoroughly characterized. The electronic
structures of these complexes have been probed through EPR
spectroscopy and DFT calculations, and these results suggest
metalloradical character. Comparison of the complexes within
the series indicates greater spin delocalization onto the
phosphines for Rh and Ir relative to Co. Further, a comparison
of the rhodium and iridium complexes, 2 and 3, with their
isoelectronic group 8 analogues, complexes 11 and 12, points
to similar electronic structures for the two sets of complexes
but with increased spin delocalization onto the phosphines for
2 and 3. The degree of covalency observed in the M−P bonds
in complexes 2, 3, 11, and 12 may explain the unusual stability
of these second- and third-row low-valent metalloradicals, for
which few are isolable and structurally characterized.11
ASSOCIATED CONTENT
■
S
* Supporting Information
18
dx.doi.org/10.1021/ic202079r | Inorg. Chem. 2012, 51, 16−18