COMMUNICATIONS
Carbon Nitride-Catalyzed Photoredox Sakurai Reactions
nam, J. W. Tucker, C. R. J. Stephenson, Org. Lett. 2010,
12, 3104–3107; g) H.-W. Shih, M. N. Vander Wal, R. L.
Grange, D. W. C. MacMillan, J. Am. Chem. Soc. 2010,
132, 13600–13603; h) J. Du, L. Ruiz Espelt, I. A. Guzei,
T. P. Yoon, Chem. Sci. 2011, 2, 2115–2119; i) Z. Lu, M.
Shen, T. P. Yoon, J. Am. Chem. Soc. 2011, 133, 1162–
1164; j) J. D. Nguyen, J. W. Tucker, M. D. Konieczyn-
ska, C. R. J. Stephenson, J. Am. Chem. Soc. 2011, 133,
4160–4163; k) M. Neumann, S. Fꢃldner, B. Kçnig, K.
Zeitler, Angew. Chem. 2011, 123, 981–985; Angew.
Chem. Int. Ed. 2011, 50, 951–954; l) Y.-Q. Zou, L.-Q.
Lu, L. Fu, N.-J. Chang, J. Rong, J.-R. Chen, W.-J. Xiao,
Angew. Chem. 2011, 123, 7309–7313; Angew. Chem.
Int. Ed. 2011, 50, 7171–7175; m) X.-W. Gao, Q.-Y.
Meng, M. Xiang, B. Chen, K. Feng, C.-H. Tung, L.-Z.
Wu, Adv. Synth. Catal. 2013, 355, 2158–2164.
D. C. Fabry, D. Leonori, C. Vila, Chem. Eur. J. 2012,
18, 5170–5174; g) L. Mçhlmann, M. Baar, J. Rieß, M.
Antonietti, X. Wang, S. Blechert, Adv. Synth. Catal.
2012, 354, 1909–1913; h) Q. Xue, J. Xie, H. Jin, Y.
Cheng, C. Zhu, Org. Biomol. Chem. 2013, 11, 1606–
1609; i) G.-L. Zhao, C. Yang, L. Guo, H.-N. Sun, C.
Chen, W. Xia, Chem. Commun. 2012, 48, 2337–2339;
j) Q.-Y. Meng, J.-J. Zhang, Q. Liu, X.-W. Gao, H.-H.
Zhang, T. Lei, Z.-J. Li, K. Feng, B. Chen, C.-H. Tung,
L.-Z. Wu, J. Am. Chem. Soc. 2013, 135, 19052–19055.
[7] a) H. Mayr, A. R. Ofial, Pure Appl. Chem. 2005, 77,
1807–1821; b) H. Mayr, A. R. Ofial, J. Phys. Org.
Chem. 2008, 21, 584–595.
[8] S. Minegishi, H. Mayr, J. Am. Chem. Soc. 2003, 125,
286–295.
[9] To confirm this assumption, labelling experiments were
done. The usage of 18O2 instead of O2 leads to selective
formation of the corresponding 18O-amide.
[4] a) T. P. Yoon, M. A. Ischay, J. Du, Nat. Chem. 2010, 2,
527–532; b) K. Zeitler, Angew. Chem. 2009, 121, 9969–
9974; Angew. Chem. Int. Ed. 2009, 48, 9785–9789; c) V.
Balzani, A. Credi, M. Venturi, ChemSusChem 2008, 1,
26–58; d) M. Fagnoni, D. Dondi, D. Ravelli, A. Albini,
Chem. Rev. 2007, 107, 2725–2756; e) D. Ravelli, D.
Dondi, M. Fagnoni, A. Albini, Chem. Soc. Rev. 2009,
38, 1999–2011; f) J. M. R. Narayanam, C. R. J. Stephen-
son, Chem. Soc. Rev. 2011, 40, 102–113; g) X. Lang, X.
Chen, J. Zhao, Chem. Soc. Rev. 2014, 43, 473–486.
[5] a) L. Shi, W. Xia, Chem. Soc. Rev. 2012, 41, 7687–7697;
b) J. Xie, H. Jin, P. Xu, C. Zhu, Tetrahedron Lett. 2014,
55, 36–48.
[6] a) A. G. Condie, J. C. Gonzꢁlez-Gꢂmez, C. R. J. Ste-
phenson, J. Am. Chem. Soc. 2010, 132, 1464–1465;
b) Z. Xie, C. Wang, K. E. deKrafft, W. Lin, J. Am.
Chem. Soc. 2011, 133, 2056–2059; c) D. P. Hari, B.
Kçnig, Org. Lett. 2011, 13, 3852–3855; d) M. Rueping,
C. Vila, R. M. Koenigs, K. Poscharny, D. C. Fabry,
Chem. Commun. 2011, 47, 2360–2362; e) M. Rueping,
J. Zoller, D. C. Fabry, K. Poscharny, R. M. Koenigs,
T. E. Weirich, J. Mayer, Chem. Eur. J. 2012, 18, 3478–
3481; f) M. Rueping, R. M. Koenigs, K. Poscharny,
[10] D. B. Freeman, L. Furst, A. G. Condie, C. R. J. Ste-
phenson, Org. Lett. 2012, 14, 94–97.
[11] Selected examples for oxidative allylation reactions
using metal catalysts: a) G. Kumaraswamy, A. N.
Murthy, A. Pitchaiah, J. Org. Chem. 2010, 75, 3916–
3919; b) D. Boess, D. Sureshkumar, A. Sud, C. Wirtz,
C. Farꢄs, M. Klussmann, J. Am. Chem. Soc. 2011, 133,
8106–8109; c) W. Muramatsu, K. Nakano, C.-J. Li, Org.
Biomol. Chem. 2014, 12, 2189–2192.
[12] a) N. E. Schore, Chem. Rev. 1988, 88, 1081–1119;
b) H. C. Shen, Tetrahedron 2008, 64, 3885–3903.
[13] S. Yamasaki, K. Fujii, R. Wada, M. Kanai, M. Shibasa-
ki, J. Am. Chem. Soc. 2002, 124, 6536–6537.
[14] E. Boess, D. Sureshkumar, A. Sud, C. Wirtz, C. Farꢄs,
M. Klussmann, J. Am. Chem. Soc. 2011, 133, 8106–
8109.
[15] a) S. E. Denmark, J. Fu, Chem. Rev. 2003, 103, 2763–
2794; b) Y.-Y. Huang, A. Chakrabarti, N. Morita, U.
Schneider, S. Kobayashi, Angew. Chem. 2011, 123,
11317–11320; Angew. Chem. Int. Ed. 2011, 50, 11121–
11124.
Adv. Synth. Catal. 0000, 000, 0 – 0
ꢀ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5
ÞÞ
These are not the final page numbers!