6944
X. Wang et al. / Bioorg. Med. Chem. Lett. 21 (2011) 6941–6944
Figure 8. Selectivity of compounds 20d and 21d.
6. The only known B-Raf crystal structures at that time were 1UWH, 1UWJ with
sorafenib and 2FB8 with SB-590885. Updated to 8/2011, there are 18 X-ray
crystal structures of B-Raf with small ligands in RCSB Protein Data Bank
(1UWH, 1UWJ, 2FB8, 3C4C, 3C4D, 3D4Q, 3IDP, 3II5, 3OG7, 3PPJ, 3PPK, 3PRF,
3PRI, 3PSB, 3PSD, 3Q4C, 3Q96, 3SKC).
7. King, A. J.; Patrick, D. R.; Batorsky, R. S.; Ho, M. L.; Do, H. T.; Zhang, S. Y.; Kumar,
R.; Rusnak, D. W.; Takle, A. K.; Wilson, D. M.; Hugger, E.; Wang, L.; Karreth, F.;
Lougheed, J. C.; Lee, J.; Chau, D.; Stout, T. J.; May, E. W.; Rominger, C. M.;
Schaber, M. D.; Luo, L.; Lakdawala, A. S.; Adams, J. L.; Contractor, R. G.; Smalley,
K. S. M.; Herlyn, M.; Morrissey, M. M.; Tuveson, D. A.; Huang, P. S. Cancer Res.
2006, 66, 11100–11105.
8. Takle, A. K.; Brown, M. J. B.; Davies, S.; Dean, D. K.; Francis, G.; Gaiba, A.; Hird, A.
W.; King, F. D.; Lovell, P. J.; Naylor, A.; Reith, A. D.; Steadman, J. G.; Wilson, D. M.
Bioorg. Med. Chem. Lett. 2006, 16, 378–381.
9. Wilhelm, S. M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.;
Zhang, X.; Vincent, P.; McHugh, M.; Cao, Y.; Shujath, J.; Gawlak, S.; Eveleigh, D.;
Rowley, B.; Liu, L.; Adnane, L.; Lynch, M.; Auclair, D.; Taylor, I.; Gedrich, R.;
Voznesensky, A.; Riedl, B.; Post, L. E.; Bollag, G.; Trail, P. A. Cancer Res. 2004, 64,
7099–7109.
10. Wong, K. K. Recent Patents Anticancer Drug Discov. 2009, 4, 28–35.
11. Ghose, A. K.; Herbertz, T.; Pippin, D. A.; Salvino, J. M.; Mallamo, J. P. J. Med.
Chem. 2008, 51, 5149–5171.
12. Very recently a series of B-Raf inhibitors with an amide group as the hinged
binder was published in this journal. Packard, G. K.; Papa, P.; Riggs, J. R.;
Erdman, P.; Tehrani, L.; Robinson, D.; Harris, R.; Shevlin, G.; Perrin-Ninkovic, S.;
Hilgraf, R.; McCarrick, M. A.; Tran, T.; Fleming, Y.; Bai, A.; Richardson, S.; Katz,
J.; Tang, Y.; Leisten, J.; Moghaddam, M.; Cathers, B.; Zhu, D.; Sakata, S. Bioorg.
13. The B-Raf enzymatic assay protocol has been described in the following
reference. Gopalsamy, A.; Ciszewski, G.; Hu, Y.; Lee, F.; Feldberg, L.; Frommer,
E.; Kim, S.; Collins, K.; Wojciechowicz, D.; Mallon, R. Bioorg. Med. Chem. Lett.
2009, 19, 2735–2738.
from a phenyl to a chlorine atom because the modeling study
suggested that a large R2 may have an unfavorable steric interac-
tion with the transposed activation loop.24 Isoindoline-1,3-diones
20a–g were prepared from intermediate 13 by acylation and then
deprotection (Scheme 5). Further reaction with hydrazine provided
2,3-dihydrophthalazine-1,4-diones 21a–g (Scheme 5).
Both the isoindoline-1,3-dione analogs and 2,3-dihydrophthal-
azine-1,4-dione analogs exhibited good activity against B-Raf
(Table 1). The potency increased from meta-chloro, bromo, to iodo
analogs (20a–c/21a–c) indicated large meta lipophilic substituents
on the phenyl ring were preferred to fill the hydrophobic pocket
formed by seven non-polar amino acid residues (Fig. 7). The
meta-trifluoromethylphenyl group has been documented9,25 as a
good hydrophobic group to fill the DFG-out pocket and analogs
(20d, 21d, 20e, and 21e) with such a group or meta-trifluorometh-
oxylphenyl indeed showed low nanomolar IC50s. As we expected,
compounds with a polar substitute (20g, 21g) were less potent.
Interestingly a tert-butyl pyrazole group, which was optimal for a
p38 type II inhibitor,26 did not give better potency.
The selectivity profile of compound 20d and 21d was assessed
against a panel of 22 protein kinases (Fig. 8). Both of the
compounds exhibited excellent selectivity against all of tested
kinases including p38alpha, PKCbeta, and VEGFR2, which were
inhibited by our previous pyrazolopyrimidine series5 and the well
known type II Raf inhibitor sorafenib.9
14. A model built from 2FB8 (PDB) was used.
In summary, both type I and type II B-Raf inhibitor leads with
novel chemical scaffolds and hinge binders have been developed
with the aid of structure-based drug design technology. Com-
pounds with low nanomolecular activity have been identified
and they are suitable for further optimization.
15. Zhao, B.; Bower, M. J.; McDevitt, P. J.; Zhao, H.; Davis, S. T.; Johanson, K. O.;
Green, S. M.; Concha, N. O.; Zhou, B.-B. S. J. Biol. Chem 2002, 277, 46609–46615.
16.
A recent analysis suggested that disruption of molecular planarity has a
positive impact on the solubility. Ishikawa, M.; Hashimoto, Y. J. Med. Chem.
2011, 54, 1539–1554.
17. Hennessy, E. J.; Buchwald, S. L. J. Org. Chem. 2005, 70, 7371–7375.
19. Backes, A.; Zech, B.; Felber, B.; Klebl, B.; Müller, G. Expert Opin. Drug Discov.
2008, 3, 1427–1449.
Acknowledgments
20. Alton, G. R.; Lunney, E. A. Expert Opin. Drug Discov. 2008, 3, 595–605.
21. Liu, Y.; Gray, N. S. Nat. Chem. Biol. 2006, 2, 358–364.
22. Wolin, R. L.; Bembenek, S. D.; Wei, J.; Crawford, S.; Lundeen, K.; Brunmark, A.;
Karlsson, L.;Edwards,J. P.; Blevitt, J. M. Bioorg. Med.Chem.Lett.2008, 18, 2825–2829.
23. A model built from 1UWH (PDB) was used.
We thank Drs. Tarek Mansour, Robert Abraham, John Ellingboe,
Ariamala Gopalsamy, John Mathias, Katherine Lee and Joseph
Strohbach for their support of this work.
24. To test this hypothesis
a close analog to compound 20d with a meta-
methoxyphenyl replacing chlorine atom was prepared and it was eight fold
less potent than 20d.
References and notes
25. Weisberg, E.; Manley, P. W.; Breitenstein, W.; Brüggen, J.; Cowan-Jacob, S. W.;
Ray, A.; Huntly, B.; Fabbro, D.; Fendrich, G.; Hall-Meyers, E.; Kung, A. L.;
Mestan, J.; Daley, G. Q.; Callahan, L.; Catley, L.; Cavazza, C.; Azam, M.;
Mohammed, A.; Neuberg, D.; Wright, R. D.; Gilliland, D. G.; Griffin, J. D. Cancer
Cell 2005, 7, 129–141.
26. Pargellis, C.; Tong, L.; Churchill, L.; Cirillo, P. F.; Gilmore, T.; Graham, A. G.;
Grob, P. M.; Hickey, E. R.; Moss, N.; Pav, S.; Regan, J. Nat. Struct. Mol. Biol. 2002,
9, 268–272.
1. Wellbrock, C.; Karasarides, M.; Marais, R. Nat. Rev. Mol. Cell Biol. 2004, 5, 875–885.
2. Wan, P. T. C.; Garnett, M. J.; Roe, S. M.; Lee, S.; Niculescu-Duvaz, D.; Good, V. M.;
Jones, C. M.; Marshall, C. J.; Springer, C. J.; Barford, D.; Marais, R. Cell 2004, 116,
855–867.
3. Shepherd, C.; Puzanov, I.; Sosman, J. A. Curr. Oncol. Rep. 2010, 12, 146–152.
4. Wang, X.; Berger, D. M.; Salaski, E. J.; Torres, N.; Hu, Y.; Levin, J. I.; Powell, D.;
Wojciechowicz, D.; Collins, K.; Frommer, E. Bioorg. Med. Chem. Lett. 2009, 19,
6571–6574.
5. Wang, X.; Berger, D. M.; Salaski, E. J.; Torres, N.; Dutia, M.; Hanna, C.; Hu, Y.;
Levin, J. I.; Powell, D.; Wojciechowicz, D.; Collins, K.; Frommer, E.; Lucas, J. J.
Med. Chem. 2010, 53, 7874–7878.