preparation of related hybrid systems combining C60 with other
carbon nanostructures such as CNTs and graphene and thus
opens the door to explore the possible applications of such
multifunctional nanomaterials.
This research was supported by the Ministerio de Educacion y
´
Ciencia (CTQ2007-63363/PPQ), the EC (contract PITN-GA-
2008-215399–FINELUMEN), Consolider project HOPE
(CSD2007-00007) and JOINT MICINN-JST action: ‘‘Chemically
Functionalized Nano-Carbon for Photovoltaic Devices’’
(PLE2009-0038). We further thank M. Irie for TEM observations.
Notes and references
1 (a) Fullerenes principles and applications, ed. F. Langa and
J.-F. Nierengarten, Royal Society of Chemistry, 2008; (b) Carbon
Fig. 3 DPV (reduction run) of pristine C60 (black), fullerene
derivative 4 (magenta) and CNH-fullerene 8 (blue).
Nanotubes and Related Structures, ed. D. M. Guldi and N. Martı
Wiley-VCH, Weinheim, 2010.
´
n,
400.4 eV, belonging to two N-atoms bound to C-atoms as
nearest neighbours,17 and a minor one 399.2 eV originating
from the other remaining N-atom.11 In contrast, fullerene
derivative 4 bearing an azide group displays a single N1s
component at 401.0 eV. These observations unambiguously
confirm that the azide residue of fullerene building block 4 is
not anymore present upon covalent incorporation into the
CNHs and clearly supports the formation of triazole rings.
This is also in perfect agreement with the IR spectrum of 8
showing that no azide (2092 cmꢁ1) residues remain in the final
product (see ESIw, Fig. S4). The incorporation of the fullerene
moiety in the CNH framework through the formation of
triazole rings was further confirmed by thermogravimetric
analysis (TGA, see ESIw).
2 G. Nasibulin, P. V. Pikhitsa, H. Jiang, D. P. Brown,
A. V. Krasheninnikov, A. S. Anisimov, P. Queipo, A. Moisala,
D. Gonzalez, G. Lientschnig, A. Hassanien, S. D. Shandakov,
G. Lolli, D. E. Resasco, M. Choi, D. Toma
E. I. Kauppinen, Nat. Nanotechnol., 2007, 2, 156.
´
nek and
3 B. W. Smith, M. Monthioux and D. E. Luzzi, Nature, 1998,
396, 323.
4 Y.-L. Zhao and J. F. Stoddart, Acc. Chem. Res., 2009, 42, 1161.
5 (a) J. L. Delgado, P. de la Cruz, A. Urbina, J. T. L. Navarrete,
J. Casado and F. Langa, Carbon, 2007, 45, 2250; (b) W. Wu,
H. Zhu, L. Fan and S. Yang, Chem.–Eur. J., 2008, 14, 5981;
(c) S. Giordani, J.-F. Colomer, F. Cattaruzza, J. Alfonsi,
M. Meneghetti, M. Prato and D. Bonifazi, Carbon, 2009,
47, 578; (d) Q. Wang and H. Moriyama, Langmuir, 2009,
25, 10834; (e) N. Mackiewicz, T. Bark, B. Cao, J. A. Delaire,
D. Riehl, W. L. Ling, S. Foillard and E. Doris, Carbon, 2011,
49, 3998.
6 J.-F. Nierengarten, V. Gramlich, F. Cardullo and F. Diederich,
Angew. Chem., Int. Ed. Engl., 1996, 35, 2101.
Owing to the solubility of hybrid compound 8, its electro-
chemical properties could be investigated by differential pulsed
voltammetry (DPV) (Fig. 3). The electrochemical studies were
performed at room temperature in o-dichlorobenzene/acetonitrile
4 : 1 containing tetra-n-butylammonium hexafluorophosphate
(TBAPF6) (0.1 M). The two characteristic reductions of C60
bis-adducts are observed for 8 (at ꢁ0.98 mV and ꢁ1.36 mV).
Interestingly, comparison of the redox potential for the first
reduction of 8 with that of its fullerene 4 revealed a cathodic
shift of 80 mV. Indeed, the redox potential of the fullerene
moiety in 8 is similar to that of pristine C60 (E1red = ꢁ0.99 mV)
measured under the same conditions. This shift may be
attributed to the existence of electronic interactions between
the CNHs and the fullerene cages. It is however worth noting
that molecular mechanic calculations show a distance of ca. 12 A
between the CNH surface and the C60 subunit. A similar shift has
been recently observed in endohedral C60@SWCNT,18 although
in this case, the distance between is much shorter, around 3.4 A.
In our case, it is also likely that the observed potential shift may
result from the specific nanoenvironment of the fullerene moieties
grafted on the CNHs.
7 J.-J. Hwang and J. M. Tour, Tetrahedron, 2002, 58, 10387.
8 J. Iehl, I. Osinska, R. Louis, M. Holler and J.-F. Nierengarten,
Tetrahedron Lett., 2009, 50, 2245.
9 (a) M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza
Filho, M. A. Pimenta and R. Saito, Acc. Chem. Res., 2002,
35, 1070; (b) M. S. Dresselhaus, A. Jorio, M. Hofmann,
G. Dresselhaus and R. Saito, Nano Lett., 2010, 10, 751.
10 (a) A. M. Rao, E. Richter, S. Bandow, B. Chase, E. C. Eklund,
K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess,
R. E. Smalley, G. Dresselhaus and M. S. Dresselhaus, Science,
1997, 275, 187; (b) S. Iijima, T. Ichihashi and Y. Ando, Nature,
1992, 356, 776.
´
11 K.-H. Le Ho, L. Rivier, B. Jousselme, P. Jegou, A. Filoramo and
S. Campidelli, Chem. Commun., 2010, 46, 8731.
12 H. P. Boehm, Carbon, 2002, 40, 145.
13 S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas,
A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff,
Carbon, 2007, 45, 1558.
14 D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates,
J. Liu and R. E. Smalley, Chem. Phys. Lett., 2000, 324, 213.
15 E. Del Canto, K. Flavin, D. Movia, C. Navio, C. Bittencourt and
S. Giordani, Chem. Mater., 2011, 23, 67 and references therein.
16 J. H. Zhou, Z. J. Sui, J. Li, P. Zhu, D. Chen, Y. C. Dai and
W. K. Yuan, Carbon, 2007, 45, 785.
17 M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley,
F. Henrich, M. Kappes and A. Hirsch, J. Am. Chem. Soc., 2003,
125, 8566.
In summary, a soluble hybrid C60-CNH has been synthesized
under CuAAC conditions and fully characterized. Importantly,
the developed synthetic route can be easily applied for the
18 N. Karousis, S. P. Economopoulos, Y. Iizumi, T. Okazaki, Z. Liu,
K. Suenaga and N. Tagmatarchis, Chem. Commun., 2010, 46, 9110.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 12771–12773 12773