7264
R. Tripathy et al. / Bioorg. Med. Chem. Lett. 21 (2011) 7261–7264
Table 6
recombinant ALK enzyme, Dr. Jean Husten and Ms. Mary Birchler
for the DLK and CDK selectivity data, Mr. Shi Yang, for VEGFR2 as-
say and Ms. Lihui Lu and Ms. Weihua Wan for cellular activity data.
Profile of the compounds 8, 8b, 8e and 8g
Compd ALK Cell
IC50 (nM)
Selectivity
Ambit S90
VEGFR2 (% Inh
LMS t1/2 (min) H,
@ 1
lM)
D, R, Ma
0.039b
0.031c
—
50%
50%
—
30, 22, 30, 25
10, 8, 8, 6
7, 10, 6, 6
References and notes
8
300
120
100
90
8b
8e
8g
1. For kinase inhibitor promiscuity and selectivity see: (a) Tanramluk, D.;
Schreyer, A.; Pitt, W. R.; Blundell, T. L. Chem. Biol. Drug Des. 2009, 74, 16; (b)
Brandt, P.; Jensen, A. J.; Nilsson, J. Bioorg. Med. Chem. Lett. 2009, 19, 5861; (c)
Bhagwat, S. S. Curr. Opin. Invest. Drugs 2009, 10, 1266. and references cited
therein.
2. (a) Tripathy, R.; Reiboldt, A.; Messina, P. A.; Iqbal, M.; Singh, J.; Bacon, R.;
Angeles, T. S.; Yang, S. X.; Albom, M. S.; Robinson, C.; Chang, H.; Ruggeri, B. A.;
Mallamo, J. P. Bioorg. Med. Chem. Lett. 2006, 16, 2158; (b) Singh, J.; Tripathy, R.
US 6455525.
—
—
14, 12, 10, 8
a
b
c
H = Human, D = Dog, R = Rat, M = Mouse.
10/253 kinases showing 90% inh. at 1 M.
8/261 kinases showing 90% inh. at 1 M.
l
l
exhibited a cell IC50 value of 300 nM (Table 5), which is a slight
improvement over the 4-methyl-1,2,3-thiadiazole-based com-
pound 5a. Moreover, 8 also showed good selectivity against IR.
To improved cellular potency further, substituent effects on the
benzyloxy segment of 8 were examined. These results are shown in
Table 6. With a single 3-fluoro substituent, 8b showed ꢀ2-fold
improvement in enzyme potency and 2.5-fold increase in ALK cell
potency. Selectivity against IR, however, dropped slightly. Addition
of a methyl group at the aliphatic carbon of the benzyloxy was not
helpful (8d). Di-substituted compounds 8e–8g also showed
improvements in enzyme and cellar potencies against ALK. Except
for 8e, selectivity against IR dropped significantly.
3. A part of the work was presented at an American chemical society meeting.
McHugh, R. J.; Tripathy, R.; Angeles, T.; Albom, M.; Cheng, M.; Dorsey, B. 235th
ACS National Meeting, April, 2008.
4. (a) Morris, S. W.; Kirstein, M. N.; Valentine, M. B.; Dittmer, K. G.; Shapiro, D. N.;
Saltman, D. L.; Look, A. T. Science 1994, 263, 1281; (b) Webb, T. R.; Slavish, J.;
George, R. E.; Look, A. T.; Xue, L.; Jiang, Q.; Cui, X.; Rentrop, W. B.; Morris, S. W.
Expert Rev. Anticancer Ther. 2009, 9, 331.
5. (a) Soda, M.; Choi, Y. L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.;
Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; Bando, M.; Ohno, S.;
Ishikawa, Y.; Aburatani, H.; Niki, T.; Sohara, Y.; Sugiyama, Y.; Mano, H. Nature
2007, 448, 561; (b) Scott, J. R.; Shapiro, G. I. Curr. Opin. Invest. Drugs 2010, 11,
1477; (c) Mosse, Y. P.; Wood, A.; Maris, J. M. Clin. Cancer Res. 2009, 15, 5609;
Moreover for missense ALK mutants see: (d) Lu, L.; Ghose, A. K.; Quail, M. R.;
Albom, M. S.; Durkin, J. T.; Holskin, B. P.; Angeles, T. S.; Cheng, M. Biochemistry
2009, 48, 3600; For a review see: (e) Milkiewicz, K. L.; Ott, G. R. Curr. Opin.
Invest. Drugs 2010, 20, 1653.
6. (a) Lovly, C. M.; Heuckmann, J. M.; de Stanchina, E.; Chen, H.; Thomas, R. K.;
Liang, C.; Pao, W. Cancer Res. 2011, 71, 4920; (b) Ott, G. R.; Tripathy, R.; Cheng,
M.; McHugh, R.; Anzalone, A. V.; Underiner, T. L.; Curry, M. A.; Quail, M. R.; Lu,
L.; Wan, W.; Angeles, T. S.; Albom, M. S.; Aimone, L. D.; Ator, M. A.; Ruggeri, B.
A.; Dorsey, B. D. ACS Med. Chem. Lett. 2010, 1, 493; (c) Xianming, D.; Wang, J.;
Zhang, J.; Sim, T.; Kim, N. D.; Sasaki, T.; Luther, W., II; George, R. E.; Janne, P. A.;
Gray, N. S. ACS Med. Chem. Lett. 2011, 2, 379; (d) Zificsak, C. A.; Theroff, J. P.;
Aimone, L. D.; Angeles, T. S.; Albom, M. S.; Cheng, M.; Mesaros, E. F.; Ott, G. R.;
Quail, M. R.; Underiner, T. L.; Wan, W.; Dorsey, B. D. Bioorg. Med. Chem. Lett.
2011, 21, 3877; (e) Mesaros, E. F.; Burke, J. P.; Parrish, J. D.; Dugan, B. J.;
Anzalone, A. V.; Angeles, T. S.; Albom, M. S.; Aimone, L. D.; Quail, M. R.; Wan,
W.; Lu, L.; Zeqi, H.; Ator, M. A.; Ruggeri, B. A.; Cheng, M.; Ott, G. R.; Dorsey, B. D.
Bioorg. Med. Chem. Lett. 2011, 21, 463; (f) Kinosita, K.; Ono, Y.; Emura, T.; Asoh,
K.; Furuich, N.; Ito, T.; Kawada, H.; Tanaka, S.; Morikami, K.; Tsukaguchi, T.;
Sakamoto, H.; Tsukuda, T.; Oikawa, N. Bioorg. Med. Chem. Lett. 2011, 21, 3788;
(g) Galkin, A. V.; Melnick, J. S.; Kim, S.; Hood, T. L.; Li, N.; Li, L.; Xia, G.;
Steensma, R.; Chopiuk, G.; Jiang, J.; Wan, Y.; Ding, P.; Liu, Y.; Sun, F.; Schultz, P.
G.; Gray, N. S.; Warmuth, M. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 270; (h)
Sabbatini, P.; Korenchuk, S.; Rowand, J. L.; Groy, A.; Liu, Q.; Leperi, D.; Atkins, C.;
Dumble, M.; Yang, J.; Anderson, K.; Kruger, R. G.; Gontarek, R. R.; Maksimchuk,
K. R.; Suravajjala, S.; Lapierre, R. R.; Shotwell, J. B.; Wilson, J. W.; Chamberlain,
S. D.; Rabindran, S. K.; Kumar, R. Mol. Cancer Ther. 2009, 8, 2811; (i) Christensen,
J. G.; Zou, H.; Arango, M.; Li, Q.; Lee, J. H.; McDonnell, S. R.; Yamazaki, S.; Alton,
G.; Mroczkowski, B.; Los, G. Mol. Cancer Ther. 2007.
The Ambit selectivity profile (S90 values) and LMS data for se-
lected thiazole compounds are shown in Table 6. Compounds 8
and 8b had improved selectivity in comparison to our initial lead
(1, S90 = 0.09). As expected, selectivity improved against VEGFR2
kinase (IC50 value of 36 nM for 1 vs 50% inhibition at 1 lM for 8
and 8b). LMS did not dramatically improve, except for 8. Halo sub-
stituents on the aromatic ring of the benzyloxy group (8b, 8e, and
8g) did little to enhance stability. Despite acceptable LMS, rat PK
data for 8 showed negligible oral exposure, although the iv profile
was reasonable (1 mg/kg; t1/2 = 0.69 h, Vd = 1.2 L/Kg, Cl = 19.6
mL/min, AUC = 972 ng h/mL, oral at 5 mg/Kg, AUC = 13 ng h/mL).
In conclusion, we have demonstrated that a lead (1) from the
pyrazolone-based kinase inhibitor series (bearing a 4-methyl-
1,2,3-thiadiazole) has been successfully modified to provide potent
ALK inhibitors with improved enzyme and cellular potencies,
selectivity against IR and other kinases along with enhanced LMS
stability. Placement of a 4-benzyloxy group on the indole segment
was key structural element acting as a molecular switch to im-
prove selectivity against VEGFR2 kinase. To probe the origin of
such selectivity, we carried out modeling of 5a against ALK and
VEGFR2 kinases. Even though it was not obvious why the activity
of 5a dropped in VEGFR2 from the docking study, we postulate that
the loss of entropy of that protein in the bound form with 5a might
be responsible for the loss of activity. From the SAR on the hetero-
cyclic part of the inhibitors, thiazole was identified as a good sub-
stitute for the 4-methyl-1,2,3-thiadiazole. Benzyloxy modification
of the thiazole series resulted in potent compounds 8b, 8e, and
8g with improved cellular activities. The inhibitor 8 had best over-
all profile with improved kinase selectivity and metabolic stability.
The PK data for 8 in rat showed a reasonable iv profile, but with
very little oral exposure.
7. Rock, E. P.; Goodman, V.; Jiang, J. X.; Mahjoob, K.; Verbois, S. L.; Morse, D.;
Dagher, R.; Pazdur, R. Oncologist 2007, 12, 107.
8. Tripathy, R.; Ghose, A.; Singh, J.; Bacon, E. R.; Angeles, T. S.; Yang, S. X.; Albom,
M. S.; Aimone, L. D.; Herman, J. L.; Mallamo, J. P. Bioorg. Med. Chem. Lett. 2007,
17, 1793.
9. Fabian, M. A.; Biggs, W. H., III; Treiber, D. K.; Atteridge, C. R.; Azimioara, M. D.;
Benedetti, M. G.; Carter, T. A.; Ciceri, P.; Edeen, P. T.; Floyd, M.; Ford, J. M.;
Galvin, M.; Gerlach, J. L.; Grotzfeld, R. M.; Herrgard, S.; Insko, D. E.; Insko, M. A.;
Lai, A. G.; Lelias, J.-M.; Mehta, S. A.; Milanov, Z. V.; Velasco, A. M.; Wodicka, L.
M.; Patel, H. K.; Zarrinkar, P. P.; Lockhart, D. J. Nat. Biotechnol. 2005, 23, 329.
10. S90 value = number of kinases showing 90% inhibition at 1 lM/total number of
kinases tested.
11. Palmer, R. H.; Vernersson, E.; Grabbe, C.; Hallberg, B. Biochem. J. 2009, 420, 345.
12. Methods (Computational). Docking Steps. The essential steps in the current
docking experiment are summarized below: (i) Prepare proteins using Maestro
protein preparation work flow; (ii) Build 3D structures of the inhibitors using
LigPrep; (iii) Glide/XP docking to keep top 10 binding poses; (iv) Selection of
the binding mode using our knowledge based approach13; most of these
modules are available in the Schrodinger molecular modeling package
Acknowledgments
13. Ghose, A. K.; Herbertz, T.; Pippin, D. A.; Salvino, J. M.; Mallamo, J. P. J. Med.
Chem. 2008, 51, 5149.
We thank Mr. Kurt Josef for his help with NMR experiments,
Dr. Sheryl L. Meyer and Ms. Beverly Holskin for supplying the