7378
N. Bomholt et al. / Bioorg. Med. Chem. Lett. 21 (2011) 7376–7378
O
SPh
O
SPh
Ph
O
Ph
O
Ph
O
O
O
O
T
T
O
O
O
a
b
MeO
MeO
MeO
OH
OAc
OAc
OH
OAc
OAc
9
10
11
Ph
O
Ph
O
Ph
O
O
O
O
c
T
T
O
d
O
e
O
11
MeO
MeO
MeO
OH
OH
OH
O
OTs
12
13
14
NC
HO
DMTO
DMTO
O
O
P
T
O
O
T
O
T
HO
MeO
HO
g
h
f
N
MeO
MeO
14
O
O
O
2
15
16
Scheme 4. Reagents and conditions: (a) Ac2O, pyridine, rt, 23 h; 98%; (b) thymine, BSA, TMSOTf, DCE, rt, 4 h, 81%; (c) satd methanolic NH3, rt, 7 h, 89%; (d) TsCl, pyridine,
70 °C, 29 h, 70%; (e) NaH, DMF, rt, 20 h, 74%; (f) H2, Pd/C 10%, EtOAc, rt, 2 h, 100%; (g) DMTCl, pyridine, rt, 14 h, 87%; (h) DIPEA, 2-cyanoethyl N,N-diisopropyl-
chlorophosphordiamidite, DCE, rt, 4 h, 85%. BSA = N,O-bistrimethylsilyl acetamide, TMSOTf = trimethylsilyl trifluoro-methanesulfonate, DCE = 1,2-dicloroethane, Ts = tolu-
ene-4-sulfonyl, DMT = dimethoxytrityl, DIPEA = N,N-diisopropylethylamine, T = thymin-1-yl.
Table 1
Tm (°C) data for matched DNA/DNA and DNA/RNA melting, taken from UV melting curves (k = 260 nm)a
DNAb 30-ACGTGACATACAGACATGGTA ON4
RNAb 30-ACGUGACAUACAGACAUGGUA ON5
Entry
Sequence
Tm (°C)
D
Tm
Ref.
ꢀ6.0
ꢀ14.5
Tm (°C)
D
Tm
Ref.
ꢀ6.5
ꢀ14.5
ON1
ON2
ON3
50-TGCACTGTATGTCTGTACCAT
50-TGCACTGTATPGTCTGTACCAT
50-TGCACTGTATPGTPCTGTACCAT
62.5
56.5
48.0
63.0
56.5
48.5
a
1
l
M of each ON in 10 mM NaH2PO4/Na2HPO4, 100 mM NaCl, 0.1 mM EDTA at pH 7.0.
b
Target for monomer Tp (ON2) is underlined.
is affected resulting in less intrastrand nucleobase overlap at the 4-
end and thereby loss of stabilizing stacking (Fig. S4). Unfortu-
References and notes
p–p
nately, it is difficult to make conclusions about the effect of the C30-
OMe group as melting was not reported for the wild type oligo in
the patent about the corresponding 2-deoxy oligonucleotides.10
In conclusion, we have described the synthesis and incorpora-
tion of a novel six-membered bicyclic nucleic acid (LpNA) into oli-
gonucleotides using standard automated DNA synthesis. The 30-
methoxy-LpNA was synthesized in 2% overall yield over 16 steps
1. Obika, S.; Nanbu, D.; Hari, Y.; Morio, K.; In, Y.; Ishida, T.; Imanishi, T.
Tetrahedron Lett. 1997, 38, 8735.
2. Koshkin, A. A.; Singh, S. K.; Nielsen, P.; Rajwanshi, V. K.; Kumar, R.; Meldgaard,
M.; Olsen, C. E.; Wengel, J. Tetrahedron 1998, 54, 3607.
3. Singh, S. K.; Nielsen, P.; Koshkin, A. A.; Wengel, J. Chem. Commun. 1998, 455.
4. Obika, S.; Morio, K.; Nanbu, D.; Imanishi, T. Chem. Commun. 1997, 1643.
5. Vester, B.; Wengel, J. Biochemistry 2004, 43, 13233.
6. Singh, S. K.; Kumar, R.; Wengel, J. J. Org. Chem. 1998, 63, 10035.
7. Zhou, C. Z.; Chattopadhyaya, J. Curr. Opin. Drug Discovery Dev. 2009, 12, 876.
8. Zhou, C. Z.; Plashkevych, O.; Liu, Y.; Badgujar, N.; Chattopadhyaya, J.
Heterocycles 2009, 78, 1715.
starting from commercially available diacetone-D-glucose.
9. Li, Q.; Yuan, F.; Zhou, C.; Plashkevych, O.; Chattopadhaya, J. J. Org. Chem. 2010,
75, 6122.
10. Migawa, M. T.; Punit, P. P.; Swayze, E. E.; Ross, B. S.; Song, Q.; Han, M. (ISIS
Pharmaceuticals), WO2011/017521A2, 2011.
11. Das, S. K.; Mallet, J. M.; Esnault, J.; Driguez, P. A.; Duchaussoy, P.; Sizun, P.;
Herault, J. P.; Herbert, J. M.; Petitou, M.; Sinaÿ, P. Chem. Eur. J. 2001, 7, 4821.
12. Yan, S. H.; Klemm, D. Tetrahedron 2002, 58, 10065.
Acknowledgments
We gratefully acknowledge the financial support from The Dan-
ish National Research Foundation.
13. Fernández, R.; Castillón, S. Tetrahedron 1999, 55, 8497.
14. Blériot, Y.; Vadivel, S. K.; Herrera, A. J.; Greig, I. R.; Kirby, A. J.; Sinaÿ, P.
Tetrahedron 2004, 60, 6813.
Supplementary data
15. Chanteloup, L.; Beau, J. M. Tetrahedron Lett. 1992, 33, 5347.
16. Ross, B. S.; Han, M. M.; Ravikumar, V. T. Nucleosides Nucleotides Nucleic Acids
2006, 25, 765.
Supplementary data associated with this article can be found, in