a-Glycosyloxyamides Derived from Cyanogenic Glycosides
del Rio LA, Pastori GM, Palma JM, Sandalio LM, Sevilla F, Corpas FJ,
Jimenez A, Lopez-Huertas E, Hernandez JA. 1998. The activated
oxygen role of peroxisomes in senescence. Plant Physiol 116: 1195–
1200.
Friebolin H. 1999. Ein- und zweidimensionale NMR-Spektroskopie – Eine
Einführung, 3rd edn.. Wiley-VCH: Weinheim.
Fukuda T, Ito H, Mukainaka T, Tokuda H, Nishino H, Yoshida T. 2003.
Anti-tumor promoting effect of glycosides from Prunus persica seeds.
Biol Pharm Bull 26: 271–273.
Hadfield KA, Bennett AB. 1997. Programmed senescence of plant organs.
Cell Death Differen 4: 662–670.
magnetically equivalent because the rotation around the C–N
amide bound is hindered due to the partial double bond charac-
ter of the C–N amide bond. Thus, the chemical shifts of the amide
proton resonances depend on temperature in that the distance
between both signals decreases with increasing temperature
until both protons become magnetically equivalent and their
resonance signals coalesce (Friebolin, 1999). Notably, only the
upfield amide protons showed a 3J-coupling to a-carbon in
HMBC experiments (Fig. 6).
Hungeling M, Lechtenberg M, Fronczek FR, Nahrstedt A. 2009. Cyano-
genic and non-cyanogenic pyridone glucosides from Acalypha indica
(Euphorbiaceae). Phytochemistry 70: 270–277.
Jaroszewski JW, Olafsdottir ES, Cornett C, Schaumburg K. 1987. Cyano-
genesis of Adenia volkensii HARMS and Tetrapathaea tetrandra CHEESE-
MAN (Passifloraceae) revisited: tetraphylin B and volkenin. Optical
rotatory power of cyclopentenoid cyanohydrin glucosides. Acta Chem
Scand B 41: 410–421.
Jaroszewski JW, Olafsdottir ES, Wellendorph P, Christensen J, Franzyk H,
Somanadhan B, Budnik BA, Jorgensen LB, Clausen V. 2002. Cyanohy-
drin glycosides of Passiflora: distribution pattern, a saturated cyclo-
pentane derivative from P. guatemalensis, and formation of
pseudocyanogenic a-hydroxyamides as isolation artefacts. Phy-
tochemistry 59: 501–511.
Jaroszewski JW, Ekpe P, Witt M. 2004. Cyclopentanoid cyanohydrin glu-
cosides and amides of Lindackeria dentata. Planta Med 70: 1001–1003.
Jones DA. 1998. Why are so many foodplants cyanogenic? Phytochemistry
47: 155–162.
Kitajima J, Tanaka Y. 1993. Constituents of Prunus zippeliana leaves and
branches. Chem Pharm Bull 41: 2007–2009.
Lechtenberg M, Nahrstedt A. 1999. Cyanogenic glycosides. In Naturally
Occuring Glycosides, Ikan R (ed.). John Wiley & Sons Ltd: Chichester;
146–192.
Lechtenberg M, Nahrstedt A, Wray V, Fronczek FR. 1994. Cyanoglucosides
from Osmaronia cerasiformis (Rosaceae). Phytochemistry 37: 1039–
1043.
Möhrle H, Fangerau G. 1980. Darstellung und Charakterisierung von Holo-
calin und seinem Isomer. Die Pharmazie 35: 756–760.
Nahrstedt A. 1975. Die Isomerisierung von Amygdalin und Homologen.
Arch Pharm 308: 903–910.
Infrared spectroscopy appeared as a suitable alternative to
NMR spectroscopy for the identification of the amide moiety.
While the nitrile absorption is usually quenched in cyanogenic
glycosides (Nahrstedt, 1981), strong C=O valence oscillations
allow the clear distinction of the corresponding amides and acids
from the nitriles and from each other (Jaroszewski et al., 1987;
Takeda et al., 1997). With the attenuated total reflection infrared
spectroscopy technique used here, only about 20 mg of pure sub-
stance was needed in order to allow a clear identification of the
amide moiety by their characteristic C=O valence (1650–
1680 cm-1) and N–H deformation (1590–1620 cm-1) oscillation
signals.
Conclusion
The occurrence of a-glycosyloxyamides alone or together with
their corresponding cyanogenic glycosides is most likely in air
dried cyanogenic plant material (Sendker and Nahrstedt, 2009).
The TLC correlation presented here hints as to the presence of
a-glycosyloxyamides in an early stage of future investigations.
Hereafter the NMR and IR data sets presented will facilitate the
identification of this class of compounds even for hitherto
unknown a-glycosyloxyamides. Finally, our protocol to produce
and purify a-glycosyloxyamides from corresponding cyanogenic
glycosides gives easy access to pure amides for future research.
Nahrstedt A. 1981. Isolation and structure elucidation of cyanogenic gly-
cosides. In Cyanide in Biology, Vennesland B, Conn EE, Knowles CJ,
Westley J, Wissing F (eds). Academic Press: London; 145–181.
Nahrstedt A, Rockenbach J. 1993. Occurrence of the cyanogenic gluco-
side prunasin and its corresponding mandelic acid amide glucoside in
Olinia species (Oliniaceae). Phytochemistry 34: 433–436.
Nakajima N, Ubukata M. 1998. Facile synthesis of cyanogen glycosides
(R)-prunasin, linamarin and (S)-heterodendrin. Biosci Biotechnol
Biochem 62: 453–458.
Acknowledgements
The Official Medicines Control Laboratory (OMCL) of the Institute
for Public Health Nordrhein-Westfalen is gratefully acknowl-
edged for their support on recording the ATR-IR and optical rota-
tion data.
Olafsdottir ES, Sorensen AM, Cornett C, Jaroszewski JW. 1991. Structure
determination of natural epoxycyclopentanes by x-ray crystallogra-
phy and NMR spectroscopy. J Org Chem 56: 2650–2655.
Schaefer FC. 1970. Nitrile reactivity. In The Chemistry of the Cyano Group,
Rappoport Z, Patai S (eds). John Wiley & Sons Ltd: London; 239–306.
Seigler DS, Brinker AM. 1993. Characterisation of cyanogenic glycosides,
cyanolipids, nitroglycosides, organic nitro compounds and nitrile glu-
cosides from plants. In Methods in Plant Biochemistry, Waterman PG
(ed.). Academic Press: London.
Sendker J, Nahrstedt A: (2009). Generation of primary amide glucosides
from cyanogenic glucosides. Phytochemistry 70: 388–393.
Smirnoff N. 1993. Tansley Review No. 52; The role of active oxygen in the
response of plants to water deficit and desiccation. New Phytol 125:
27–58.
References
Adersen A, Brimer L, Olsen CE, Jaroszewski JW. 1993. Cyanogenesis of
Passiflora colinvauxii, a species endemic to the Galapagos islands. Phy-
tochemistry 33: 365–367.
Backheet EY, Farag SF, Ahmed AS, Sayed HM. 2003. Flavonoids and cya-
nogenic glycosides from the leaves and stem bark of Prunus persica
(L.) BATSCH (Meet Ghamr) peach local cultivar in Assiut region. Bull
Pharm Sci 26: 55–66.
Brimer L, Christensen SB, Molgaard P, Nartey F. 1983. Determination of
cyanogenic compounds by thin-layer chromatography. 1. A densito-
metric method for quantification of cyanogenic glycosides, employ-
ing enzyme preparations (b-glucuronidase) from Helix pomatia and
picrate-impregnated ion-exchange sheets. J Agric Food Chem 31: 789–
793.
Takeda T, Gonda, R, Hatano K. 1997. Constitution of lucumin and its
related glycosides from Calocarpum sapota MERRILL. Chem Pharm Bull
45: 697–699.
Turczan JW, Medwick T, Plank WM 1978. 220 MHz Nuclear magnetic reso-
nance studies of amygdalin and some related compounds. J AOAC 61:
192–207.
D’Abrosca B, DellaGreca M, Fiorentino A, Monaco P, Previtera L, Simonet
AM, Zarrelli A. 2001. Potential allelochemicals from Sambucus nigra.
Phytochemistry 58: 1073–1081.
Phytochem. Anal. 2010, 21, 575–581
Copyright © 2010 John Wiley & Sons, Ltd.
View this article online at wileyonlinelibrary.com