17 G. H. Tao, Y. Guo, D. A. Parrish and J. M. Shreeve, J. Mater. Chem.,
2010, 20, 2999–3005.
3-Methyl-1-amino-1,2,3-triazolium nitroformate (11)
18 M. H. V. Huynh, M. A. Hiskey, E. L. Hartline, D. P. Montoya and
R. Gilardi, Angew. Chem., Int. Ed., 2004, 43, 4924–4928.
19 G. W. Drake, T. Hawkins, A. Brand, L. Hall, M. McKay, A. Vij and
I. Ismail, Propellants, Explos., Pyrotech., 2003, 28, 174–180.
20 V. I. Slovetskii, V. M. Brusnikina, L. I. Khmel’Nitskii, O. V. Lebedev
and S. S. Novikov, Chem. Heterocycl. Compd., 1966, 2, 448–452.
21 M. W. Schmidt, M. S. Gordon and J. A. Boatz, J. Phys. Chem. A,
2005, 109, 7285–7295.
22 J. P. Agrawal, Prog. Energy Combust. Sci., 1998, 24, 1–30.
23 H. Xue, S. W. Arritt, B. Twamley and J. M. Shreeve, Inorg. Chem.,
2004, 43, 7972–7977.
24 C. F. Ye, J. C. Xiao, B. Twamley and J. M. Shreeve, Chem. Commun.,
2005, 2750–2752.
Compound 7 (1356 mg, 6 mmol) was dissolved in 20 mL meth-
anol. While stirring, a solution of 1548 mg (6 mmol) of silver
nitroformate dissolved in 10 mL methanol was added dropwise.
The pale yellow suspension was stirred for 30 min, filtered, and
then rinsed with 20 mL methanol. The yellow solvent was
removed under reduced pressure to provide a yellow solid (11) at
82% yield (1.22 g). Mp 82.2 ꢁC; IR (KBr): 3178, 3152, 3124, 3105,
3070, 3015, 2865, 1697, 1630, 1537, 1513, 1422, 1384, 1323, 1279,
1147, 1107, 984, 815, 794, 733, 631, 483 cmꢀ1; 1H NMR (DMSO-
d6) d: 9.10 (s, 2H), 8.63 (s, 1H), 8.50 (s, 1H), 4.23 ppm (s, 3H); 13
C
NMR (DMSO-d6) d: 150.53, 131.68, 127.36, 49.01 ppm.
25 Y. G. Huang, H. X. Gao, B. Twamley and J. M. Shreeve, Eur. J.
Inorg. Chem., 2007, 2025–2030.
26 G. Drake, G. Kaplan, L. Hall, T. Hawkins and J. Larue, J. Chem.
Crystallogr., 2007, 37, 15–23.
3-Methyl-1-amino-1,2,3-triazolium azotetrazolate (12)
27 H. G. Shi, S. H. Li, Y. C. Li, X. T. Li and S. P. Pang, Chin. J. Energ.
Mater., 2008, 16, 676–678.
A mixture of 3-methyl-1-amino-1,2,3-triazolium sulfate salt (1.47
g, 5 mmol) and barium azotetrazole (1.81 g, 6 mmol) in methanol
(100 mL) was stirred at room temperature. BaSO4 was filtered and
rinsed with 25 mL methanol. The clear filtrate was evaporated to
dryness under reduced pressure to obtain a yellow solid product at
90% yield. Mp 144.6 ꢁC; IR (KBr) n: 3426, 3248, 3148, 3124, 3063,
2930, 2808, 1627, 1548, 1486, 1389, 1315, 1250, 1196, 1180, 1106,
1029, 800, 729, 628, 560, 482 cmꢀ1; 1H NMR (DMSO-d6) d: 8.77 (s,
28 Y. C. Li, C. Qi, S. H. Li, H. J. Zhan, C. H. Sun, Y. Z. Yu and
S. P. Pang, J. Am. Chem. Soc., 2010, 132(35), 12172–12173.
29 R. M. Herbst and J. A. Garrison, J. Org. Chem., 1953, 18, 941–945.
30 A. G. Mayants, V. N. Vladimirov, N. M. Razumov and
V. A. Shlyapoc-hnikov, Zh. Org. Khim., 1991, 27(11), 2450–2455.
31 APEX2 v2.1 0, Bruker AXS Inc., Madison, Wisconsin, USA, 2006.
32 SAINT v7.34 A, Bruker AXS Inc., Madison, Wisconsin, USA, 2005.
33 XPREP v2005/2, Bruker AXS Inc., Madison, Wisconsin, USA, 2004.
34 SADABS v2004/1, Bruker AXS Inc., Madison, Wisconsin, USA,
2004.
1H), 8.62 (s, 1H), 8.32 (s, 2H, NH2), 4.22 ppm (s, 3H, CH3); 13
C
35 SHELXTL v6.12, Bruker AXS Inc., Madison, Wisconsin, USA, 2000.
36 G. Kaplan, G. Drake, K. Tollison, L. Hall and T. Hawkins, J.
Heterocycl. Chem., 2005, 42, 19–27.
NMR (DMSO-d6) d: 171.86, 130.78, 127.73, 39.86 ppm.
37 A. Hammerl, T. M. Klapotke, H. Noth, M. Warchhold, G. Holl,
M. Kaiser and U. Ticmanis, Inorg. Chem., 2001, 40, 3570–3575.
38 P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis, Wiley-
VCH, Weinheim, 2003.
39 M. H. V. Huynh, M. D. Coburn, T. J. Meyer and M. Wetzler, Proc.
Natl. Acad. Sci. U. S. A., 2006, 103, 10322–10327.
Acknowledgements
This work was supported by the Program for New Century
Excellent Talents in University no. NCET-09-0046 and the
National Natural Science Foundation of China under Grant no.
11176004.
40 C. Qi, S. H. Li, Y. C. Li, Y. Wang, X. K. Chen and S. P. Pang, J.
Mater. Chem., 2011, 21, 3221–3225.
41 H. Gao, C. Ye, C. Piekarski and J. M. Shreeve, J. Phys. Chem. A,
2007, 111, 10718–10731.
42 K. E. Gutowski, R. D. Rogers and D. A. Dixon, J. Phys. Chem. A,
2006, 110, 11890–11897.
43 K. E. Gutowski, R. D. Rogers and D. A. Dixon, J. Phys. Chem. B,
2007, 111, 4788–4800.
44 M. W. Schmidt, M. S. Gordon and J. A. Boatz, J. Phys. Chem. A,
2005, 109, 7285–7295.
References
1 S. Iyer and N. Slagg, Adv. Mater., 1990, 2, 174–179.
2 A. K. Sikder and N. Sikder, J. Hazard. Mater., 2004, 112, 1–15.
3 R. P. Singh, R. D. Verma, D. T. Meshri and J. M. Shreeve, Angew.
Chem., Int. Ed., 2006, 45, 3584–3601.
€
4 G. Steinhauser and T. M. Klapotke, Angew. Chem., 2008, 120, 3376–
45 K. E. Gutowski, J. D. Holbrey, R. D. Rogers and D. A. Dixon, J.
Phys. Chem. B, 2005, 109, 23196–23208.
3394.
5 R. Singh, H. Gao, D. Meshri and J. Shreeve, Struct. Bonding, 2007,
125, 35–83.
€
6 T. M. Klapotke and J. Stierstorfer, J. Am. Chem. Soc., 2009, 131,
1122–1134.
7 M. A. Hiskey, D. E. Chavez, D. L. Naud, S. F. Son, H. L. Berghout
and C. A. Bolme, Proc. Int. Pyrotech. Semin., 2000, 27, 3–14.
8 H. Xue, Y. Gao, B. Twamley and J. M. Shreeve, Chem. Mater., 2005,
17, 191–198.
46 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin,
J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone,
B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala,
K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,
V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain,
O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,
J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,
B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople,
Gaussian Development Version, Revision F.02, Gaussian, Inc.,
Wallingford, CT, 2006.
€
9 T. M. Klapotke, P. Mayer, A. Schulz and J. J. Weigand, J. Am. Chem.
Soc., 2005, 127, 2032–2033.
10 Y. Joo, B. Twamley and J. M. Shreeve, Chem.–Eur. J., 2009, 15, 9097–
9104.
11 Z. Zeng, H. Gao, B. Twamley and J. M. Shreeve, J. Mater. Chem.,
2007, 17, 3819–3826.
12 H. Gao, Y. Joo, B. Twamley, Z. Zhou and J. M. Shreeve, Angew.
Chem., 2009, 121, 2830–2833.
13 Y. Zhang, H. Gao, Y. Guo, Y. Joo and J. M. Shreeve, Chem.–Eur. J.,
2010, 16, 3114–3120.
14 S. Garg, H. Gao, Y. Joo, D. A. Parrish, Y. Huang and
J. N. M. Shreeve, J. Am. Chem. Soc., 2010, 132, 8888–8890.
15 M. H. V. Huynh, M. A. Hiskey, D. E. Chavez, D. L. Naud and
R. D. Gilardi, J. Am. Chem. Soc., 2005, 127, 12537–12543.
€
16 J. Heppekausen, T. M. Klapotke and S. A. Sproll, J. Org. Chem.,
2009, 74, 2460–2466.
47 R. G. Parr and W. Yang, Density Functional Theory of Atoms and
Molecules, Oxford University Press, New York, 1989.
48 H. D. B. Jenkins, D. Tudeal and L. Glasser, Inorg. Chem., 2002, 41,
2364–2367.
This journal is ª The Royal Society of Chemistry 2012
J. Mater. Chem., 2012, 22, 666–674 | 673