acids worked well.11c A switch to the likely more useful
simple alkylacetic esters was unsuccessful, presumably due
tothe relatively poor electrophilicity of the alkylacetic ester
(to react with the NHC catalyst) and/or the low acidity of
the ester R-CꢀH. We now have addressed this problem
and report that simple alkylacetic esters can behave as effec-
tive enolate precursors under asymmetric catalysis (Scheme 1b).
The choice of NHC with suitable nucleophilicity (as
carbenes) and proper electron-withdrawing ability (as
triazoliums) is crucial in order to achieve controlled ester
activations. The sterics of NHC catalysts and the strength
of the bases also play important roles.
Scheme 1. Generation of Chiral Enolates from Esters
Our initial study and condition optimization is summar-
ized in Table 1 using ester 1a with an R-ethyl substituent as
a model substrate. The conditions (e.g., entry 1; cat. A,
DIEA) used in our earlier work for R-aryl acetic ester
activation10a,b did not lead to ester enolate generations.
Instead, the ester substrate (1a) under the catalysis of NHC
underwent hydrolysis to the corresponding carboxylic
acid. This observation indicated that an initial addition
of NHC to ester 1a toform NHC-bound ester intermediate
I did occur (in the presence of NHC, more rapid hydrolysis
of esters was observed) (Scheme 1b). The failure of enolate
generation was likely due to the relatively low acidity of the
R-CꢀH of intermediate I. Addressing the acidity issue was
not trivial as increasing the strength of the bases could lead
to background reactions (e.g., base-catalyzed deprotona-
tion of ester 1a without involving NHC catalysts) and
profound hydrolysis of the ester substrate. Fortunately, we
a few intrinsic limitations such as instabilities, relatively
poor availabilities, and somewhat undesired synthetic
steps to prepare these substrates. Carboxylic esters and
acids may be superior substrates on certain aspects from
the perspective of practical applications. On the funda-
mental side, the challenging asymmetric catalytic activa-
tion of ester is expected to generate insightful knowledge
for catalyst and reaction designs.10
Very recently, Smith and co-workers creatively used
isothioureas as nucleophilic catalysts to activate in situ
formed carboxylic anhydrides as enolate intermediates for
intra- and intermolecular additions to electron-deficient
alkenes.11 Our laboratory disclosed that stable esters de-
rived from R-aryl acetic acids could be activated with NHC
catalysts to generate ester enolate intermediates.10,12 In our
earlier approach,10a,b the ester substrate was limited to
R-aryl acetic esters. In Smith’s elegant study, the anhydride
substrates derived from R-aryl, alkyl, and heteroacetic
(9) For reviews on NHC catalysis, see: (a) Enders, D.; Niemeier, O.;
Henseler, A. Chem. Rev. 2007, 107, 5606–5655. (b) Marion, N.; Diez-
Gonzalez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988–3000.
(c) Nair, V.; Vellalath, S.; Babu, B. P. Chem. Soc. Rev. 2008, 37, 2691–
2698. (d) Rovis, T. Chem. Lett. 2008, 37, 2–7. (e) Glorius, F.; Hirano, K.
Ernst Schering Found. Symp. Proc. 2008, 2, 159–181. (f) Arduengo, A. J.,
III; Iconaru, L. I. Dalton Trans. 2009, 6903–6914. (g) Phillips, E. M.;
Chan, A.; Scheidt, K. A. Aldrichimica Acta 2009, 42, 55–66. (h) Moore,
J. L.; Rovis, T. Top. Curr. Chem. 2011, 291, 77–144. (i) Biju, A. T.; Kuhl,
N.; Glorius, F. Acc. Chem. Res. 2011, 44, 1182–1195. (j) Hirano, K.; Piel,
I.; Glorius, F. Chem. Lett. 2011, 40, 786–791. (k) Chiang, P.-C.; Bode,
J. W. TCI MAIL 2011, 149, 2–17. (l) Nair, V.; Menon, R. S.; Biju, A. T.;
Sinu, C. R.; Paul, R. R.; Jose, A.; Sreekumar, V. Chem. Soc. Rev. 2011,
40, 5336–5346. (m) Vora, H. U.; Rovis, T. Aldrichimica Acta 2011, 44, 3–
11. (n) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314–
325. (o) Cohen, D. T.; Scheidt, K. A. Chem. Sci. 2012, 3, 53–57. (p)
Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511–3522. (q)
Douglas, J.; Churchill, G.; Smith, A. Synthesis 2012, 44, 2295–2309
and also see ref 7m.
(10) (a) Hao, L.; Du, Y.; Lv, H.; Chen, X.; Jiang, H.; Shao, Y.; Chi,
Y. R. Org. Lett. 2012, 14, 2154–2157. (b) Hao, L.; Chan, W. C.; Ganguly,
R.; Chi, Y. R. Synlett 2013, 24, 1197–1200. (c) Cheng, J.; Huang, Z.; Chi,
Y. R. Angew. Chem., Int. Ed. 2013, 52, 8592–8596. (d) Fu, Z.; Xu, J.;
Zhu, T.; Leong, W. W. Y.; Chi, Y. R. Nat. Chem. 201310.1038/
nchem.1710.
(11) (a) Belmessieri, D.; Morrill, L. C.; Simal, C.; Slawin, A. M. Z.;
Smith, A. D. J. Am. Chem. Soc. 2011, 133, 2714–2720. (b) Simal, C.;
Lebl, T.; Slawin, A. M. Z.; Smith, A. D. Angew. Chem., Int. Ed. 2012, 51,
3653–3657. (c) Morrill, L. C.; Lebl, T.; Slawin, A. M. Z.; Smith, A. D.
Chem. Sci. 2012, 3, 2088–2093. Smith also reported creative work on
NHC-catalyzed carbonate activation and O- to C-acyl transfers; see: (d)
Thomson, J. E.; Rix, K.; Smith, A. D. Org. Lett. 2006, 8, 3785–3788. For
a mechanistic study on isothiourea-catalyzed activation of anhydride,
see: (e) Morrill, L. C.; Douglas, J.; Lebl, T.; Slawin, A. M. Z.; Fox, D. J.;
Smith, A. D. Chem. Sci. 201310.1039/c3sc51791h.
(7) For a review, see: (a) Rong, Z. Q.; Zhang, W.; Yang, G. Q.; You,
S. L. Curr. Org. Chem 2011, 15, 3077–3090. For selected examples, see:
(b) Chow, K. Y. K.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 8126–8127.
(c) Reynolds, N. T.; de Alaniz, J. R.; Rovis, T. J. Am. Chem. Soc. 2004,
126, 9518–9519. (d) Reynolds, N. T.; Rovis, T. J. Am. Chem. Soc. 2005,
127, 16406–16407. (e) He, M.; Uc, G. J.; Bode, J. W. J. Am. Chem. Soc.
2006, 128, 15088–15089. (f) Alcaide, B.; Almendros, P.; Cabrero, G.;
Ruiz, M. P. Chem. Commun. 2007, 4788–4790. (g) Bode, J. W.; Sohn,
S. S. J. Am. Chem. Soc. 2007, 129, 13798–13799. (h) Li, G. Q.; Li, Y.;
Dai, L. X.; You, S. L. Org. Lett. 2007, 9, 3519–3521. (i) Vora, H. U.;
Rovis, T. J. Am. Chem. Soc. 2007, 129, 13796–13797. (j) Du, D.; Li,
L. X.; Wang, Z. W. J. Org. Chem. 2009, 74, 4379–4382. (k) Kawanaka,
Y.; Phillips, E. M.; Scheidt, K. A. J. Am. Chem. Soc. 2009, 131, 18028–
18029. (l) Kobayashi, S.; Kinoshita, T.; Uehara, H.; Sudo, T.; Ryu, I.
Org. Lett. 2009, 11, 3934–3937. (m) Phillips, E. M.; Wadamoto, M.;
Roth, H. S.; Ott, A. W.; Scheidt, K. A. Org. Lett. 2009, 11, 105–108. (n)
Wang, L.; Thai, K.; Gravel, M. Org. Lett. 2009, 11, 891–893. (o) Vora,
H. U.; Rovis, T. J. Am. Chem. Soc. 2010, 132, 2860–2861. (p) Ling, K. B.;
Smith, A. D. Chem. Commun. 2011, 47, 373–375. (q) Jian, T. Y.; Sun,
L. H.; Ye, S. Chem. Commun. 2012, 48, 10907–10909. Also see: (r) He,
M.; Beahm, B. J.; Bode, J. W. Org. Lett. 2008, 10, 3817–3820 and ref 2e.
(8) For selective protonations of enal β-carbons leading to NHC-
bound ester enolates for new CꢀC and carbonꢀheteroatom bond
formations, see: (a) He, M.; Struble, J. R.; Bode, J. W. J. Am. Chem.
Soc. 2006, 128, 8418–8420. (b) Burstein, C.; Tschan, S.; Xie, X. L.;
Glorius, F. Synthesis 2006, 2418–2439. (c) Phillips, E. M.; Wadamoto,
M.; Chan, A.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 3107–
3110. (d) Wadamoto, M.; Phillips, E. M.; Reynolds, T. E.; Scheidt, K. A.
J. Am. Chem. Soc. 2007, 129, 10098–10099. (e) Kaeobamrung, J.;
Kozlowski, M. C.; Bode, J. W. Proc. Natl. Acad. Sci. U.S.A. 2010,
107, 20661–20665. (f) Fang, X.; Chen, X.; Chi, Y. R. Org. Lett. 2011, 13,
4708–4711. For relevant mechanistic studies of enal activations, see: (g)
Schrader, W. W.; Handayani, P. P.; Burstein, C.; Glorius, F. Chem.
Commun. 2007, 716–718. (h) Mahatthananchai, J.; Bode, J. W. Chem.
Sci. 2012, 3, 192–197.
(12) Lupton et al. reported elegant studies on NHC-catalyzed activa-
tion of R,β-unsaturated enol esters to generate R,β-unsaturated acyli-
midazoliums as electrophiles; see: (a) Ryan, S. J.; Candish, L.; Lupton,
D. W. J. Am. Chem. Soc. 2009, 131, 14176–14177. (b) Candish, L.;
Lupton, D. W. Org. Lett. 2010, 12, 4836–4839.
B
Org. Lett., Vol. XX, No. XX, XXXX