7124
N. S. Nandurkar et al. / Tetrahedron Letters 52 (2011) 7121–7124
first for 2 min, followed by washing with DMF (ꢀ2), and then for 18 min. The
References and notes
deprotected resin was then washed with DMF (ꢀ6), CH2Cl2 (ꢀ6) and then DMF
(ꢀ6) again. Subsequent attachment of amino acids and/or capping units was
accomplished using appropriate cycles of TBTU-mediated coupling and Fmoc
deprotection reactions as described above.
1. Rappoport, Z.; Liebman, J. F. In Rappoport, Z., Ed.; The Chemistry of
Hydroxylamines, Oximes and Hydroxamic Acids; Wiley-Interscience:
Chichester, 2009; Vols. 1–2,.
2. (a) Miller, M. J. Acc. Chem. Res. 1986, 19, 49–56; (b) Miller, M. J. Chem. Rev. 1989,
89, 1563–1579.
3. (a) Bickel, H.; Bosshardt, R.; Gäumann, E.; Reusser, P.; Vischer, E.; Voser, W.;
Wettstein, A.; Zähner, H. Helv. Chim. Acta 1960, 43, 2118–2128; (b) Fischer, E.
A.; McLachlan, D. R.; Kruck, T. P. A.; Mustard, R. A. Pharmacology 1990, 41, 263–
271; (c) Porter, J. B.; Rafique, R.; Srichairatanakool, S.; Davis, B. A.; Shah, F. T.;
Hair, T.; Evans, P. Ann. N.Y. Acad. Sci. 2005, 1054, 155–168.
4. (a) Richon, V. M.; Webb, Y.; Merger, R.; Sheppard, T.; Jursic, B.; Ngo, L.; Civoli, F.;
Breslow, R.; Rifkind, R. A.; Marks, P. A. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 5705–
5708; (b) Mai, A.; Esposito, M.; Sbardella, G.; Massa, S. Org. Prep. Proced. Int.
2001, 33, 391–394.
General procedure for the synthesis of hydroxamic acids by hydroxyaminolysis of
ester-linked substrates: NaOH (1.2 equiv) was weighed and dissolved in
a
minimum amount of i-PrOH. A solution of 50% NH2OH (aq) (13 equiv) was then
added. The solution was transferred to the resin and the swollen resin was
gently stirred with a spatula. After cleavage for 15 h, the cleavage solution was
drained from the resin and the resin rinsed with i-PrOH (ꢀ2). The combined
solutions were neutralized with 0.1 M HCl (aq), the solvents evaporated, and
the resulting residue lyophilized overnight.
Procedure for the synthesis of substrate 30 from 29: Solid-supported masked
aldehyde substrate 29 was treated with 10% TFA (aq) for 1 h. The resin was
filtered, washed with H2O (ꢀ6), DMF (ꢀ6), MeOH (ꢀ6) and CH2Cl2 (ꢀ6), and
lyophilized for 20 h. The resin was then treated with indole (3 equiv) in 50%
TFA (CH2Cl2). The reaction was allowed to proceed for 5 min. After removal of
the reaction mixture by suction, the remaining resin was washed with H2O
(ꢀ6), 20% piperidine in DMF (ꢀ2), H2O (ꢀ6), DMF (ꢀ6), MeOH (ꢀ6) and CH2Cl2
(ꢀ6), dried under vacuum and lyophilized.
5. (a) Saban, N.; Bujak, M. Cancer Chemother. Pharmacol. 2009, 64, 213–221; (b)
Paris, M.; Porcelloni, M.; Binsachi, M.; Fattori, D. J. Med. Chem. 2008, 51, 1505–
1529.
6. (a) Krchnák, V. Mini-Rev. Med. Chem. 2006, 6, 27–36; (b) Alsina, J.; Albericio, F.
Biopolymers 2003, 71, 454–477.
Procedure for the synthesis of substrate 34 from 32: Acryloyl chloride (10 equiv)
was dissolved in dry CH2Cl2 and transferred to solid-supported peptide 32. The
swollen resin was stirred gently with a spatula and allowed to react for 1 h. The
resin was filtered and washed with H2O (ꢀ6), DMF (ꢀ6) and CH2Cl2 (ꢀ6), then
dried using suction for 30 min. The resin was transferred to a capped reaction
vial. The oxidative cleavage was carried out by addition of DBU (5 equiv) and
NaIO4 (10 equiv) to the resin pre-swollen in H2O:THF (1:1). After 10 min of
shaking, a solution of OsO4 in t-BuOH (2.5% w/w, 0.05 equiv) was added and
the mixture was left under shaking for 20 h. The mixture was transferred to a
syringe (5 ml) equipped with a polypropylene filter. After removal of the
reaction mixture by suction, the resin was washed with H2O (ꢀ6), 10% TFA (aq)
(ꢀ4), H2O (ꢀ6), DMF (ꢀ6) and CH2Cl2 (ꢀ6) and dried under vacuum. The resin
was then subjected to treatment with 50% TFA (CH2Cl2), stirred gently with a
spatula and allowed to react, in a sealed syringe, for 25 h. After removal of the
reaction mixture by suction, the remaining resin was washed with H2O (ꢀ6),
20% piperidine in DMF (ꢀ2), H2O (ꢀ6), DMF (ꢀ6), MeOH (ꢀ6) and CH2Cl2 (ꢀ6),
dried under vacuum and lyophilized.
7. Chen, J. J.; Spatola, A. F. Tetrahedron Lett. 1997, 38, 1511–1514.
8. Ngu, K.; Patel, D. V. J. Org. Chem. 1997, 62, 7088–7089.
9. (a) Floyd, C. D.; Lewis, C. N.; Patel, S. R.; Whittaker, M. Tetrahedron Lett. 1996,
37, 8045–8048; (b) Richter, L. S.; Dessai, M. C. Tetrahedron Lett. 1997, 38, 321–
322.
10. (a) Gordeev, M. F.; Hui, H. C.; Gordon, E. M.; Patel, D. V. Tetrahedron Lett. 1997,
38, 1729–1732; (b) Barlaam, B.; Koza, P.; Berriot, J. Tetrahedron 1999, 55, 7221–
7232.
11. (a) Mellor, S. L.; McGuire, C.; Chan, W. C. Tetrahedron Lett. 1997, 38, 3311–3314;
(b) Bauer, U.; Ho, W. B.; Koskinen, A. M. P. Tetrahedron Lett. 1997, 38, 7233–
7236.
12. Salvino, J. M.; Mathew, R.; Kiesow, T.; Narensingh, R.; Mason, H. J.; Dodd, A.;
Groneberg, R.; Burns, C. J.; McGeehan, G.; Kline, J.; Orton, E.; Tamg, S.-H.;
Morrisette, M.; Labaudininiere, R. Bioorg. Med. Chem. Lett. 2000, 10, 1637–1640.
13. (a) Dankwardt, S. M. Synlett 1998, 761; (b) Dankwardt, S. M.; Billedeau, R. J.;
Lawley, L. K.; Abbot, S. C.; Martin, R. L.; Chan, C. S.; Van Wart, H. E.; Walker, K. E.
Bioorg. Med. Chem. Lett. 2000, 10, 2513–2516.
14. (a) Zhang, W.; Zhang, L.; Li, X.; Weigel, J. A.; Hall, S. E.; Mayer, J. P. J. Comb.
Chem. 2001, 3, 151–153; (b) Thouin, E.; Lubell, W. D. Tetrahedron Lett. 2000, 41,
457–460.
15. Ho, C. Y.; Strobel, E.; Ralbovsky, J.; Galemmo, R. A., Jr. J. Org. Chem. 2005, 70,
4873–4875.
16. Meldal, M. Tetrahedron Lett. 1992, 33, 3077–3080.
17. Knorr, R.; Trzeciak, A.; Bannwarth, W.; Gillessen, D. Tetrahedron Lett. 1989, 30,
1927–1930.
Compound 35: 1H NMR (500 MHz, DMSO-d6) d 10.31 (br s, 1H), 8.14 (m, 1H),
6.94 (s, 1H), 6.73 (s, 1H), 5.10 (s, 1H), 4.56 (dd, J = 8.5, 7.5 Hz, 1H), 4.09 (q,
J = 6.8 Hz, 1H), 3.75 (s, 3H), 3.68 (s, 3H), 3.14 (dd, J = 15.5, 7.2 Hz, 1H), 3.05 (m,
2H), 3.01 (s, 3H), 2.90 (dd, J = 15.0, 9.1 Hz, 1H), 1.92 (m, 2H), 1.46 (m, 2H), 1.38
(m, 2H), 1.19 (m, 2H), 1.11 (d, J = 6.9 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) d
169.4, 168.9, 167.0, 162.8, 148.4, 147.0, 126.7, 126.5, 111.7, 107.4, 56.1, 55.3,
55.2, 53.0, 38.1, 31.8, 30.9, 29.1. 28.4, 25.4, 24.5, 17.7; MS (ESI) calcd for
C
23H33N4O7 [M+H]+ 477.2 found 477.3. Isolated yield after prep. RP-HPLC: 15%.
20. For a review on the use of N-acyliminium intermediates on solid-phase, see: Le
Quement, S. T.; Petersen, R.; Meldal, M.; Nielsen, T. E. Biopolymers 2010, 94,
242–256.
18. Blankemeyer-Menge, B.; Nimtz, M.; Frank, R. Tetrahedron Lett. 1990, 31, 1701–
1704.
19. General solid-phase peptide synthesis procedures: Attachment of HMBA linker to
amino-functionalized PEGA800 resin was carried out by pre-mixing HMBA
(3.0 equiv), NEM (4.0 equiv) and TBTU (2.88 equiv) in DMF for 5 min. The
volume of DMF was kept to a minimum amount sufficient for full coverage and
swelling of the beads. The resulting solution was added to the resin, and
allowed to react for 2 h. After removal of the reaction mixture by suction, the
remaining resin was washed with DMF (ꢀ6), CH2Cl2 (ꢀ6), and then dried under
vacuum. Coupling of the first amino acid to the HMBA-derivatized resin was
accomplished by treating the freshly lyophilized resin with a mixture of the
Fmoc-protected amino acid (3.0 equiv), MeIm (5.0 equiv) and MSNT (3.0 equiv)
in CH2Cl2. The MSNT-mediated coupling was repeated once. Removal of the
Fmoc group was carried out by treating the resin with 20% piperidine in DMF,
21. For examples, see: (a) Le Quement, S. T.; Nielsen, T. E.; Meldal, M. J. Comb.
Chem. 2008, 10, 447–455; (b) Le Quement, S. T.; Nielsen, T. E.; Meldal, M. J.
Comb. Chem. 2007, 9, 1060–1072; (c) Nielsen, T. E.; Le Quement, S.; Meldal, M.
Org. Lett. 2005, 7, 3601–3604; (d) Nielsen, T. E.; Meldal, M. J. Comb. Chem. 2005,
7, 599–610; (e) Nielsen, T. E.; Meldal, M. J. Org. Chem. 2004, 69, 3765–3773.
22. Zarranz De Ysern, M. E.; Ordoñez, L. A. Prog. Neuro-Psychopharmacol. 1981, 5,
343–355.
23. (a) Groth, T.; Meldal, M. J. Comb. Chem. 2001, 3, 34–44; (b) Groth, T.; Meldal, M.
J. Comb. Chem. 2001, 3, 45–63.
24. Nielsen, T. E.; Meldal, M. Org. Lett. 2005, 7, 2695–2698.