Communication
ChemComm
2 D. A. Freedman, L. Wu and A. J. Levine, Cell. Mol. Life Sci., 1999, 55,
96–107.
3 J. Momand, D. Jung, S. Wilczynski and J. Niland, Nucleic Acids Res.,
1998, 26, 3453–3459.
consistent with selective binding and degradation of MDM2 as
the mechanism of action of Nutlin-3a-HT (2).
In this study, we report the synthesis and evaluation of Nutlin-3a-
HT (2) as the first hydrophobically-tagged small-molecule inhibitor of
the MDM2–p53 interaction. Cell-based data for 2 indicate that it
targets MDM2 for degradation in human tumor cells. 2 had a
stronger effect on cell viability and the induction of apoptosis than
the untagged MDM2–p53 interaction inhibitor Nutlin-3a (1). While
the degrading potency of 2 is lower than that of some MDM2-
targeting PROTACS,21 a major advantage of the hydrophobic tagging
approach over the PROTAC approach using cereblon ligands is the
guaranteed absence of teratogenicity mediated by the cereblon ligand,
either in the context of the intact PROTAC or via metabolites.16a In
addition, the hydrophobic tagging approach has the potential to be
less dependent on the chemical nature and length of the linker
connecting the protein-binding entity and the moiety facilitating
protein degradation than the PROTAC-based approach is. Our data
demonstrate that hydrophobic tagging, a method that was previously
shown to improve the cellular potency of an existing irreversible
inhibitor of a protein–protein interaction domain,16 can also be
applied to reversibly binding small-molecule inhibitors of protein–
protein interaction domains. Future studies will be required to define
the requirements for potent hydrophobically-tagged, reversible inhi-
bitors of protein–protein interactions in terms of activities and/or
dissociation rates. Our work vastly expands the scope of hydrophobic
tagging of pre-existing small-molecule inhibitors of protein–protein
interactions as a method by which to target and degrade disease-
related proteins.
¨
4 N. Estrada-Ortiz, C. G. Neochoritis and A. Domling, ChemMedChem,
2016, 11, 757–772.
5 L. T. Vassilev, B. T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z. Filipovic,
N. Kong, U. Kammlott, C. Lukacs, C. Klein, N. Fotouhi and E. A. Liu,
Science, 2004, 303, 844–848.
6 S. Wang, Y. Zhao, A. Aguilar, D. Bernard and C. Y. Yang, Cold Spring
Harbor Perspect. Med., 2017, 7, a026245.
7 (a) T. K. Neklesa, H. S. Tae, A. R. Schneekloth, M. J. Stulberg,
T. W. Corson, T. B. Sundberg, K. Raina, S. A. Holley and
C. M. Crews, Nat. Chem. Biol., 2011, 7, 538–543; (b) M. J. Long,
D. R. Gollapalli and L. Hedstrom, Chem. Biol., 2012, 19, 629–637.
8 (a) T. K. Neklesa and C. M. Crews, Nature, 2012, 487, 308–309;
(b) P. M. Cromm and C. M. Crews, Cell Chem. Biol., 2017, 24,
1181–1190.
9 (a) T. Xie, S. M. Lim, K. D. Westover, M. E. Dodge, D. Ercan,
S. B. Ficarro, D. Udayakumar, D. Gurbani, H. S. Tae, S. M. Riddle,
T. Sim, J. A. Marto, P. A. Janne, C. M. Crews and N. S. Gray, Nat.
Chem. Biol., 2014, 10, 1006–1012; (b) S. M. Lim, T. Xie, K. D.
Westover, S. B. Ficarro, H. S. Tae, D. Gurbani, T. Sim, J. A. Marto,
P. A. Janne, C. M. Crews and N. S. Gray, Bioorg. Med. Chem. Lett.,
2015, 25, 3382–3389.
10 J. L. Gustafson, T. K. Neklesa, C. S. Cox, A. G. Roth, D. L. Buckley,
H. S. Tae, T. B. Sundberg, D. B. Stagg, J. Hines, D. P. McDonnell,
J. D. Norris and C. M. Crews, Angew. Chem., Int. Ed., 2015, 54,
9659–9662.
11 C. Steinebach, I. Sosic, S. Lindner, A. Bricelj, F. Kohl, Y. L. D. Ng,
M. Monschke, K. G. Wagner, J. Kronke and M. Gu¨tschow, MedChem-
Comm, 2019, 10, 1037–1041.
12 N. Gao, Y. P. Huang, T. T. Chu, Q. Q. Li, B. Zhou, Y. X. Chen,
Y. F. Zhao and Y. M. Li, Bioorg. Chem., 2019, 84, 254–259.
13 N. Gao, T.-T. Chu, Q.-Q. Li, Y.-J. Lim, T. Qiu, M.-R. Ma, Z.-W. Hu,
X.-F. Yang, Y.-X. Chen, Y.-F. Zhao and Y.-M. Li, RSC Adv., 2017, 7,
40362–40366.
14 B. Vu, P. Wovkulich, G. Pizzolato, A. Lovey, Q. Ding, N. Jiang, J. J.
Liu, C. Zhao, K. Glenn, Y. Wen, C. Tovar, K. Packman, L. Vassilev
and B. Graves, ACS Med. Chem. Lett., 2013, 4, 466–469.
15 A. Scharow, M. Raab, K. Saxena, S. Sreeramulu, D. Kudlinzki,
S. Gande, C. Dotsch, E. Kurunci-Csacsko, S. Klaeger, B. Kuster,
H. Schwalbe, K. Strebhardt and T. Berg, ACS Chem. Biol., 2015, 10,
2570–2579.
16 (a) S. Rubner, A. Scharow, S. Schubert and T. Berg, Angew. Chem., Int.
Ed., 2018, 57, 17043–17047; (b) S. Rubner, S. Schubert and T. Berg,
Org. Biomol. Chem., 2019, 17, 3113–3117.
17 T. A. Davis, A. E. Vilgelm, A. Richmond and J. N. Johnston, J. Org.
Chem., 2013, 78, 10605–10616.
This work was generously supported by the Deutsche For-
schungsgemeinschaft (BE 4572/3-1), as well as the European
Union and the Free State of Saxony, European Regional
Development Fund. We thank the Core Unit Fluorescence
Technologies of the Interdisciplinary Centre for Clinical
Research (IZKF) at the Faculty of Medicine of Leipzig University
¨
¨
(Kathrin Jager and Andreas Losche) for support with the flow
cytometry analysis, Barbara Klu¨ver for experimental support,
and Angela Berg for critical reading of the manuscript.
18 (a) J. B. Hendrickson and M. S. Hussoin, J. Org. Chem., 1987, 52,
4137–4139; (b) J. B. Hendrickson and M. S. Hussoin, J. Org. Chem.,
1989, 54, 1144–1149.
19 Z. Nikolovska-Coleska, R. Wang, X. Fang, H. Pan, Y. Tomita, P. Li,
P. P. Roller, K. Krajewski, N. G. Saito, J. A. Stuckey and S. Wang,
Anal. Biochem., 2004, 332, 261–273.
Conflicts of interest
There are no conflicts of interest to declare.
20 S. Prakash, T. Inobe, A. J. Hatch and A. Matouschek, Nat. Chem.
Biol., 2009, 5, 29–36.
21 Y. Li, J. Yang, A. Aguilar, D. McEachern, S. Przybranowski, L. Liu,
C. Y. Yang, M. Wang, X. Han and S. Wang, J. Med. Chem., 2019, 62,
448–466.
Notes and references
1 D. Hamroun, S. Kato, C. Ishioka, M. Claustres, C. Beroud and
T. Soussi, Hum. Mutat., 2006, 27, 14–20.
14354 | Chem. Commun., 2019, 55, 14351--14354
This journal is ©The Royal Society of Chemistry 2019