Reactions of Stable Amidinate Chlorosilylene
R. Azhakar, S. P. Sarish, H. W. Roesky, J. Hey, D. Stalke, Inorg.
Chem. 2011, 50, 5039–5043; c) G. Tavcˇar, S. S. Sen, R. Azhakar,
A. Thorn, H. W. Roesky, Inorg. Chem. 2010, 49, 10199–10202;
d) J. Li, S. Merkel, J. Henn, K. Meindl, A. Döring, H. W. Roe-
sky, R. S. Ghadwal, D. Stalke, Inorg. Chem. 2010, 49, 775–777.
[15] a) R. S. Ghadwal, H. W. Roesky, S. Merkel, D. Stalke, Chem.
Eur. J. 2010, 16, 85–88; b) R. Azhakar, G. Tavcˇar, H. W. Roe-
sky, J. Hey, D. Stalke, Eur. J. Inorg. Chem. 2011, 475–477.
[16] a) A. Jana, P. P. Samuel, G. Tavcˇar, H. W. Roesky, C. Schulzke,
J. Am. Chem. Soc. 2010, 132, 10164–10170; b) R. Azhakar, S. P.
Sarish, H. W. Roesky, J. Hey, D. Stalke, Organometallics 2011,
30, 2897–2900; c) R. Azhakar, R. S. Ghadwal, H. W. Roesky,
J. Hey, D. Stalke, Organometallics 2011, 30, 3853–3858.
[17] a) S. P. Nolan (Ed.), N-Heterocyclic Carbenes in Synthesis,
Wiley-VCH, Weinheim, Germany, 2006; b) F. Glorius (Ed.), N-
Heterocyclic Carbenes in Transition Metal Catalysis, Springer-
Verlag, Berlin, 2007; c) J. Chun, I. G. Jung, H. J. Kim, M. Park,
M. S. Lah, S. U. Son, Inorg. Chem. 2009, 48, 6353–6355; d) P.-
C. Chiang, M. Rommel, J. W. Bode, J. Am. Chem. Soc. 2009,
131, 8714–8718; e) V. J. Catalano, A. L. Moore, J. Shearer, J.
Kim, Inorg. Chem. 2009, 48, 11362–11375; f) N. D. Harrold,
R. Waterman, G. L. Hillhouse, T. R. Cundari, J. Am. Chem.
Soc. 2009, 131, 12872–12873; g) A. Sinha, S. M. W. Rahaman,
M. Sarkar, B. Saha, P. Daw, J. K. Bera, Inorg. Chem. 2009, 48,
11114–11122; h) A. G. Tennyson, E. L. Rosen, M. S. Collins,
V. M. Lynch, C. W. Bielawski, Inorg. Chem. 2009, 48, 6924–
6933; i) Y. Lee, B. Li, A. H. Hoveyda, J. Am. Chem. Soc. 2009,
131, 11625–11633; j) P. M. Zimmerman, A. Paul, C. B. Mus-
grave, Inorg. Chem. 2009, 48, 5418–5433; k) S. Groysman,
R. H. Holm, Inorg. Chem. 2009, 48, 621–627; l) E. M. Phillips,
M. Riedrich, K. A. Scheidt, J. Am. Chem. Soc. 2010, 132,
13179–13181; m) M. K. Samantaray, C. Dash, M. M. Shaikh,
K. Pang, R. J. Butcher, P. Ghosh, Inorg. Chem. 2011, 50, 1840–
1848; n) J. Mathew, C. H. Suresh, Inorg. Chem. 2010, 49, 4665–
4669; o) J. M. Smith, J. R. Long, Inorg. Chem. 2010, 49, 11223–
11230; p) F. E. Hahn, M. C. Jahnke, Angew. Chem. 2008, 120,
3166–3216; Angew. Chem. Int. Ed. 2008, 47, 3122–3172.
v. R. Schleyer, G. H. Robinson, Science 2008, 321, 1069–1071;
c) Y. Wang, Y. Xie, M. Y. Abraham, P. Wei, H. F. Schaefer III,
P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2010, 132,
14370–14372; d) Y. Wang, G. H. Robinson, Chem. Commun.
2009, 5201–5213.
[20] S. S. Sen, G. Tavcˇar, H. W. Roesky, D. Kratzert, J. Hey, D.
Stalke, Organometallics 2010, 29, 2343–2347.
[21] S. P. Sarish, A. Jana, H. W. Roesky, P. P. Samuel, C. E. A. And-
rade, B. Dittrich, C. Schulzke, Organometallics 2011, 30, 912–
916.
[22] a) E. Otten, R. C. Neu, D. W. Stephan, J. Am. Chem. Soc. 2009,
131, 9918–9919; b) Y. Xiong, S. Yao, M. Driess, J. Am. Chem.
Soc. 2009, 131, 7562–7563; c) S. Yao, Y. Xiong, M. Brym, M.
Driess, J. Am. Chem. Soc. 2007, 129, 7268–7269; d) I. Bar-
Nahum, A. K. Gupta, S. M. Huber, M. Z. Ertem, C. J. Cramer,
W. B. Tolman, J. Am. Chem. Soc. 2009, 131, 2812–2814.
[23] a) J. García-Fortanet, F. Kessler, S. L. Buchwald, J. Am. Chem.
Soc. 2009, 131, 6676–6677; b) C. S. Penkett, J. A. Woolford,
I. J. Day, M. P. Coles, J. Am. Chem. Soc. 2010, 132, 4–5; c)
S. R. Wang, Z. Qiu, Z. Xie, J. Am. Chem. Soc. 2010, 132, 9988–
9989; d) K. L. Miller, B. N. Williams, D. Benitez, C. T. Carver,
K. R. Ogilby, E. Tkatchouk, W. A. Goddard III, P. L. Diacone-
scu, J. Am. Chem. Soc. 2010, 132, 342–355; e) S. Duhovic, M. J.
Monreal, P. L. Diaconescu, Inorg. Chem. 2010, 49, 7165–7169;
f) M. Feller, E. Ben-Ari, M. A. Iron, Y. Diskin-Posner, G. Le-
itus, L. J. W. Shimon, L. Konstantinovski, D. Milstein, Inorg.
Chem. 2010, 49, 1615–1625; g) G. Zeng, Y. Guo, S. Li, Inorg.
Chem. 2009, 48, 10257–10263.
[24] a) A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Ver-
schoor, J. Chem. Soc., Dalton Trans. 1984, 1349–1356; b) V.
Chandrasekhar, R. Azhakar, T. Senapati, P. Thilagar, S. Ghosh,
S. Verma, R. Boomishankar, A. Steiner, P. Kögerler, Dalton
Trans. 2008, 1150–1160.
[25] a) C. Ackerhans, H. W. Roesky, T. Labahn, J. Magull, Organo-
metallics 2002, 21, 3671–3674; b) M. Unno, Y. Kishimoto, H.
Matsumoto, Organometallics 2004, 23, 6221–6224; c) Y. Itami,
B. Marciniec, M. Kubicki, Organometallics 2003, 22, 3717–
3722.
[18] a) D. P. Mills, L. Soutar, W. Lewis, A. J. Blake, S. T. Liddle, J.
Am. Chem. Soc. 2010, 132, 14379–14381; b) C.-H. Yang, J. Bel-
tran, V. Lemaur, J. Cornil, D. Hartmann, W. Sarfert, R.
Fröhlich, C. Bizzari, L. D. Cola, Inorg. Chem. 2010, 49, 9891–
9901; c) H.-J. Park, K. H. Kim, S. Y. Choi, H.-M. Kim, W. I.
Lee, Y. K. Kang, Y. K. Chung, Inorg. Chem. 2010, 49, 7340–
7352; d) R. S. Crees, M. L. Cole, L. R. Hanton, C. J. Sumby,
Inorg. Chem. 2010, 49, 1712–1719; e) C. Dash, M. M. Shaikh,
R. J. Butcher, P. Ghosh, Inorg. Chem. 2010, 49, 4972–4983; f)
C.-F. Fu, C.-C. Lee, Y.-H. Liu, S.-M. Peng, S. Warsink, C. J.
Elsevier, J.-T. Chen, S.-T. Liu, Inorg. Chem. 2010, 49, 3011–
[26] H. C. Brown, B. Singaram, C. P. Mathew, J. Org. Chem. 1981,
46, 2712–2717.
[27] M.-D. Su, S.-Y. Chu, Inorg. Chem. 1999, 38, 4819–4823.
[28] We have optimized compound 4 (S. P. Sarish, A. Jana, H. W.
Roesky, P. P. Samuel, C. E. A. Andrade, B. Dittrich, C. Schul-
zke, Organometallics 2011, 30, 912–916.) at BP86/SVP level and
the N–Si–C cone angle was found to be 48°. Unlike 4c, the
HOMO in 4 is mainly the lone-pair orbital on silicon and hence
it might be a nucleophilic center.
[29] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112–122.
3018; g) S. Naeem, L. Delaude, A. J. P. White, J. D. E. T. Wil- [30] M. J. Frisch et al., Gaussian 03, revision E.01, Gaussian, Inc.,
ton-Ely, Inorg. Chem. 2010, 49, 1784–1793; h) W.-Q. Zhang,
A. C. Whitwood, I. J. S. Fairlamb, J. M. Lynam, Inorg. Chem.
2010, 49, 8941–8952; i) F. Huang, G. Lu, L. Zhao, Z.-X. Wang,
Wallingford CT, 2004 (for the complete list of authors see Sup-
porting Information).
[31] A. D. Becke, Phys. Rev. A 1988, 38, 3098–3100.
J. Am. Chem. Soc. 2010, 132, 12388–12396; j) C.-H. Hsieh, [32] a) J. P. Perdew, Phys. Rev. B 1986, 33, 8822–8824; b) J. P. Per-
M. Y. Darensbourg, J. Am. Chem. Soc. 2010, 132, 14118–
14125; k) P. Arnold, S. Pearson, Coord. Chem. Rev. 2007, 251,
596–609; l) M. Albrecht, Chem. Commun. 2008, 3601–3610; m)
K. E. Krahulic, H. M. Tuononen, M. Parvez, R. Roesler, J.
Am. Chem. Soc. 2009, 131, 5858–5865; n) L. Benhamou, E.
Chardon, G. Lavigne, S. Bellemin-Laponnaz, V. César, Chem.
Rev. 2011, 111, 2705–2733.
dew, Phys. Rev. B 1986, 34, 7406–7406.
[33] A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97,
2571–2577.
[34] a) B. I. Dunlap, J. Chem. Phys. 1983, 78, 3140–3142; b) B. I.
Dunlap, THEOCHEM 2000, 529, 37–40.
[35] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7,
3297–3305.
[19] a) B. Quillian, P. Wei, C. S. Wannere, P. v. R. Schleyer, G. H.
Robinson, J. Am. Chem. Soc. 2009, 131, 3168–3169; b) Y.
Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer III, P.
Received: June 29, 2011
Published Online: October 10, 2011
Eur. J. Inorg. Chem. 2011, 5006–5013
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
5013