Organic Letters
Letter
K. Tetrahedron Lett. 2016, 57, 654−657. For other examples of C−N
coupling in flow, see: (c) Yang, J. C.; Niu, D.; Karsten, B. P.; Lima, F.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2016, 55, 2531−2535.
(d) Naber, J. R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2010, 49,
9469−9474.
(14) Optimization of the Cham−Evans−Lam in continuous flow
included changing the ligand (TMEDA, pyridine), varying the quantity
of Et3N, using myristic acid as a solubilizing agent for the copper
catalyst, and changing the residence time (1 → 4 h).
(15) A 91% yield of 4 could be achieved but required excess CuO
(1.4 equiv) and coupling partner 9 (6 equiv).
(16) (a) Comer, E.; Organ, M. G. Chem. - Eur. J. 2005, 11, 7223−
7227. (b) Organ, M. G.; Hanson, P. R.; Rolfe, A.; Samarakoon, T. B.;
Ullah, F. J. Flow Chem. 2011, 1, 32−39. (c) Marafie, J. A.; Moseley, J.
D. Org. Biomol. Chem. 2010, 8, 2219−2227.
(17) Lee, J.-K.; Fuchter, M. J.; Williamson, R. M.; Leeke, G. A.; Bush,
E. J.; McConvey, I. F.; Saubern, S.; Ryan, J. H.; Holmes, A. B. Chem.
Commun. 2008, 4780−4782.
(18) A similar SNAr approach to 3 was unsuccessful.
(19) Dai, C.; Narayanam, J. M. R.; Stephenson, C. R. J. Nat. Chem.
2011, 3, 140−145.
(20) Kostiuk, S. L.; Woodcock, T.; Dudin, L. F.; Howes, P. D.;
Harrowven, D. C. Chem. - Eur. J. 2011, 17, 10906−10915.
(21) Monfette, S.; Eyholzer, M.; Roberge, D. M.; Fogg, D. E. Chem. -
Eur. J. 2010, 16, 11720−11725.
(22) Skowerski, K.; Czarnocki, S. J.; Knapkiewicz, P. ChemSusChem
2014, 7, 536−542.
(23) For a review of applications of the tube-in-tube reactor, see:
Brzozowski, M.; O’Brien, M.; Ley, S. V.; Polyzos, A. Acc. Chem. Res.
2015, 48, 349−362.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures and characterization data for all
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
The authors acknowledge the Natural Sciences and Engineering
Research Council of Canada, Universite
■
́
de Montreal, the
Centre for Green Chemistry and Catalysis, and the NSERC
CREATE Program in Continuous Flow Science for generous
funding. The Canadian Foundation for Innovation is acknowl-
edged for generous funding of the flow chemistry infrastructure.
Ms. V. Kairouz is thanked for assistance with continuous flow
́
infrastructure. E.M. and M.R. thank NSERC and the FRQNT
for graduate scholarships. Materia Inc. is thanked for generous
donations of catalysts G2 and GH2.
REFERENCES
■
(1) Asakawa, Y. Phytochemistry 2004, 65, 623−669.
(2) Kosenkova, Y. S.; Polovinka, M. P.; Komarova, N. I.; Korchagina,
D. V.; Kurochkina, N. Y.; Cheremushkina, V. A.; Salakhutdinov, N. F.
Chem. Nat. Compd. 2007, 43, 712−713.
(3) Asakawa, Y. Prog. Chem. Org. Nat. Prod. 1995, 65, 335−351.
(4) Harrowven, D. C.; Kostiuk, S. L. Nat. Prod. Rep. 2012, 29, 223−
242.
(5) Toyota, M.; Yoshida, T.; Kan, Y.; Takaoka, S.; Asakawa, Y.
Tetrahedron Lett. 1996, 37, 4745−4748.
(6) Keseru, G. M.; Nogradi, M. Nat. Prod. Rep. 1995, 12, 69−75.
̋
(7) Bocskei, Z.; Keseru, G. M. J. Chem. Soc., Perkin Trans. 2 1994, 2,
595−597.
̈
̋
(8) (a) Schwartner, C.; Michel, C.; Stettmaier, K.; Wagner, H.; Bors,
W. Free Radical Biol. Med. 1996, 20, 237−244. (b) Hsiao, G.; Teng, C.-
M.; Wu, C.-L.; Ko, F.-N. Arch. Biochem. Biophys. 1996, 334, 18−26.
(9) (a) Asakawa, Y.; Toyota, M.; Taira, Z.; Takemoto, T.; Kido, M. J.
Org. Chem. 1983, 48, 2164−2167. (b) Shen, J.; Li, G.; Liu, Q.; He, Q.;
Gu, J.; Shi, Y.; Lou, H. Cancer Biol. Ther. 2010, 9, 33−39.
(10) Iwai, Y.; Murakami, K.; Gomi, Y.; Hashimoto, T.; Asakawa, Y.;
Okuno, Y.; Ishikawa, T.; Hatakeyama, D.; Echigo, N.; Kuzuhara, T.
PLoS One 2011, 6, e19825.
(11) Zhao, P.; Beaudry, C. M. Org. Lett. 2013, 15, 402−405.
(12) Optimization included exploring the effects of temperature (80
→ 130 °C), electrophile (Br vs I), solvent (pyridine, DMF, PhMe,
dioxane, DMSO), base (K2CO3, Cs2CO3), copper source (CuO,
Cu2O, CuCl, CuBr2, CuI, Cu(acac)2), and ligand (tetramethylphenan-
throline, tetramethylheptadione, glycine, proline, 8-hydroxyquinoline).
At best, a 29% yield of 3 could be achieved when 1.4 equiv of CuI and
6 equiv of the coupling partner 7 were used. Ullmann couplings of 3
and 7 were not attempted in flow because of their heterogeneous
nature.
(13) For examples of Chan−Lam couplings in flow, see: (a) Mallia,
C. J.; Burton, P. M.; Smith, Al. M. R.; Walter, G. C.; Baxendale, I. R.
Beilstein J. Org. Chem. 2016, 12, 1598−1607. (b) Bao, J.; Tranmer, G.
D
Org. Lett. XXXX, XXX, XXX−XXX