Journal of the American Chemical Society
Communication
different route. Kozyukov, V. P.; Kozyukov, V. P.; Mironov, V. F. Zh.
Obshch. Khim. 1983, 53, 119−126, . Full experimental and
characterization data are in the Supporting Information.
and DEF chemistry was also successful, Table 1, entries 10−13.
The intermediacy of organosilicon compounds 4 was also
observed for each of these new catalysts.
(12) (a) Chrusc
(b) Weinmann, M.; Walter, G.; Huttner, G.; Heinrich, J. J.
́
iel, J. J. Can. J. Chem. 2005, 83, 508−516.
In the case of the reduction of DMF by germanes and
stannanes we have, to date, been unable to observe any
R3EOCH2NMe2 (E = Ge, Sn) intermediates when using any of
the catalysts noted above. It is possible that these group 14-
substituted amines react more rapidly under the reaction
conditions than their silicon analogs. Alternatively another
mechanism may be operative for Ge and Sn hydride reductions.
In the case of the Sn chemistry the range of other products
suggests a considerable radical participation as noted in other
stannane reduction reactions.19 Also, for the amide reductions
catalyzed by 1a, 1b, 2a and 2b where no R3SiOCH2NMe2
intermediates are observed, the overall mechanism may be
different to that proposed for the use of 3a.
Organomet. Chem. 1998, 561, 131−141. (c) Marciniec, B.; Gulin
H. J. Organomet. Chem. 1978, 146, 1−5.
́
ska,
(13) Kozyukov, V. P.; Mironov, V. F Zh. Obshch. Khim 1983, 53,
159−156.
(14) (a) Mathews, S. L.; Pons, V.; Heinekey, D. M. Inorg. Chem.
2006, 45, 6453−6459. (b) Stosur, M.; Kochel, A.; Keller, A.;
Szyman
(c) Adrjan, B.; Szyman
2163−2170. (d) Gadek, A.; Szyman
́
ska-Buzar, T. Organometallics 2006, 25, 3791−3794.
́
́
1441−1448. (e) We have photolyzed Mo(CO)6 in the presence of
Et3SiH and observed the formation of (CO)5Mo(η2-H-SiEt3), 1H
NMR resonance at −8.4 ppm for Mo-H. Addition of DMF to this
solution at room temperature results in the formation of
Et3SiOCH2NMe2. Experimental details and spectroscopic monitoring
are available in the Supporting Information.
(15) (a) R3SiOSnBu3: R3 = Ph3, Ph2Me, PhMe2: Takamizawa, M.;
Yamamoto, Y.; Takano, K. Jpn. Kokai Tokkyo Koho 1978, JP 53097045
A 19780824. (b) R3SiOGeEt3: R3 = Ph3, Ph2Me, PhMe2, Et3:
Hreczycho, G.; Frackowiak, D.; Pawluc, P.; Marciniec, B. Tetrahedron
Lett. 2011, 52, 74−6.
(16) Strohmeier, W.; Guttenberger, J. F.; Blumenthal, H.; Albert, G.
Chem. Ber. 1966, 99, 3419−3424.
(17) (a) Palmer, B. J.; Hill, R. H. Can. J. Chem. 1996, 74, 1959−1967.
(b) Schubert, U.; Grubert, S. Monats. Chem. 1998, 129, 437−443.
(18) Sheng, T.; Dechert, S.; Hyla-Kryspin, I.; Winter, R. F.; Meyer, F.
Inorg. Chem. 2005, 44, 3863−3874.
(19) (a) Dakternieks, D.; Perchyonok, V. T.; Schiesser, C. H.
Tetrahedron: Asymmetry 2003, 14, 3057−3068. (b) Studer, A.; Amrein,
S. Synthesis 2002, 835−849.
ASSOCIATED CONTENT
* Supporting Information
■
S
Detailed experimental procedures and characterization of
products. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
ACKNOWLEDGMENTS
■
This work was supported by the Welch Foundation, Houston,
TX (Grant # AH-0546) and NIH-MARC program. We thank
Mr. Eduardo Cervantes for experimental help with reactions
involving catalysts 6 and 7.
REFERENCES
■
(1) Kopylova, L. I.; Ivanova, N. D.; Voronkov, M. G. Zhur. Obshch.
Khim. 1985, 55, 1649−51.
(2) Zhou, S.; Junge, K.; Adis, D.; Das, S.; Beller, M. Angew. Chem., Int.
Ed. 2009, 48, 9507−9510.
(3) (a) Das, S.; Addis, D.; Zhou, S.; Junge, K.; Beller, M. J. Am. Chem.
Soc. 2010, 132, 1770−1771. (b) Das, S.; Addis, D.; Junge, K.; Beller,
M. Chem.Eur. J. 2011, 17, 12186−12192.
(4) (a) Motoyama, Y.; Mitsui, K.; Ishida, T.; Nagashima, H. J. Am.
Chem. Soc. 2005, 127, 13150−13151. (b) Hanada, S.; Motoyama, Y.;
Nagashima, H. Terahedront. Lett. 2006, 47, 6173−6177. (c) Miles, D.;
Ward, J.; Foucher, D. A. Macromolecules 2009, 42, 9199−9203.
(5) Matsubara, K.; Iura, T.; Maki, T.; Nagashima, H. J. Org. Chem.
2002, 67, 4985−4988.
(6) (a) Sunada, Y.; Kawakami, H.; Imaoka, T.; Motoyama, Y.;
Nagashima, H. Angew. Chem., Int. Ed. 2009, 48, 9511−9514.
(b) Motoyama, Y.; Aoki, M.; Takaoka, N.; Aoto, R. Chem. Commun.
2009, 1574−1576.
(7) (a) Sakai, N.; Fujii, K.; Konokahara, T. Tetrahedron Lett. 2008,
49, 6873−75.
(8) (a) Barbe, G.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 18−
19. (b) Pelletier, G.; Bechara, W. S.; Charette, A. B. J. Am. Chem. Soc.
2010, 132, 12817−12819.
(9) (a) Sharma, H. K.; Pannell, K. H. Angew. Chem., Int. Ed. 2009, 48,
7052−7054. (b) Itazaki, M.; Ueda, K.; Nakazawa, H. Angew. Chem., Int.
Ed. 2009, 48, 6938.
(10) Stolz, I.; Dobson, G. R.; Sheline, R. K. Inorg. Chem. 1963, 2,
322−6.
(11) We have synthesized the new materials R3SiOCH2NMe2, in
good yields for R3 = Ph3, Ph2Me, PhMe2, Et3 and the procedure can be
readily extended to a wide variety of silyl groups. Previously only the
Me3Si compound had been reported by the Mironov group by a
851
dx.doi.org/10.1021/ja2101246 | J. Am. Chem.Soc. 2012, 134, 848−851