ORGANIC
LETTERS
2012
Vol. 14, No. 2
516–519
Catalytic Diastereoselective Reduction
of r,β-Epoxy and r,β-Aziridinyl Ynones
ꢀ
Valerie Druais, Christophe Meyer,* and Janine Cossy*
Laboratoire de Chimie Organique, ESPCI ParisTech, CNRS, 10 rue Vauquelin,
75231 Paris Cedex 05, France
christophe.meyer@espci.fr; janine.cossy@espci.fr
Received November 21, 2011
ABSTRACT
The Noyori transfer hydrogenation of R,β-epoxy and R,β-aziridinyl ynones leads to the corresponding R,β-epoxy or R,β-aziridinyl propargylic
alcohols with high reagent-controlled diastereoselectivity.
The catalytic asymmetric synthesis of chiral secondary
propargylic alcohols is an important research area due to
the highly versatile utility of these building blocks and their
extensive use as key intermediates in numerous total
syntheses of bioactive natural products.1 To achieve this
goal, catalytic asymmetric alkynylation of aldehydes2 and
reduction of ynones3,4 can be employed as complementary
methods. Among the latter class of transformations, the
Noyori transfer hydrogenation of ynones, catalyzed by
(η6-arene)ruthenium(II) complexes comprising a mono-
N-tosylated diamine as a chiral ligand, constitutes a powerful
method to synthesize propargylic alcohols with high en-
antiomeric purity.4 It is also worth noting that a high level
of reagent-controlled diastereoselectivity has been ob-
served in the reduction of ynones possessing a stereocenter
at the R or β position of the carbonylgroup, including cases
where the latter is substituted by a heteroatom.5
Herein, we report that the Noyori transfer hydrogena-
tion of ynones bearing stereocenters substituted by an
oxygen atom at both the R and β positions can be problem-
atic and induce a strong substrate/reagent mismatch pairing.
By contrast, high levels of reagent-controlled diastereo-
selectivities can be observed in the case of R,β-epoxy or
R,β-aziridinyl acetylenic ketones.
(1) Modern Acetylene Chemistry; Stang, P. J., Diederich, F., Eds.;
Wiley-VCH: Weinheim, 1995.
(2) For a recent review, see: Trost, B. M.; Weiss, A. H. Adv. Synth.
Catal. 2009, 351, 963–983.
(3) (a) Helal, C. J.; Magriotis, P. A.; Corey, E. J. J. Am. Chem. Soc.
1996, 118, 10938–10939. (b) Parker, K. A.; Ledeboer, M. W. J. Org.
Chem. 1996, 61, 3214–3217.
(4) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am.
Chem. Soc. 1997, 119, 8738–8739.
(5) For examples with ynones bearing a stereocenter at the β position,
see: (a) Chavez, D. E.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2001, 40,
3667–3670. (b) Fujii, K.; Maki, K.; Kanai, M.; Shibasaki, M. Org. Lett.
At the outset of our studies was the assumption that
optically active 1,2,3-triols of type A, possessing one
€
2003, 5, 733–736. (c) Shin, Y.; Fournier, J.-H.; Fukui, Y.; Bruckner,
A. M.; Curran, D. P. Angew. Chem., Int. Ed. 2004, 43, 4634–4637. (d)
Maki, K.; Motoki, R.; Fujii, K.; Kanai, M.; Kobayashi, T.; Tamura, S.;
Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 17111–17117. (e) Trost,
B. M.; Frederiksen, M. U.; Papillon, J. P. N; Harrington, P. E.; Shin, S.;
Shireman, B. T. J. Am. Chem. Soc. 2005, 127, 3666–3667. (f) Fukui, Y.;
Bruckner, A. M.; Shin, Y.; Balachandran, R.; Day, B. W.; Curran, D. P.
Org. Lett. 2006, 8, 301–304. (g) Ferrie, L.; Reymond, S.; Capdevielle, P.;
Cossy, J. Org. Lett. 2007, 9, 2461–2464. (h) Mandel, A. L.; Bellosta, V.;
Curran, D. P.; Cossy, J. Org. Lett. 2009, 11, 3282–3285. For ynones
bearing a stereocenter at the R position, see ref 4 and (i) Marshall, J. A.;
Bourbeau, M. P. Org. Lett. 2003, 5, 3197–3199. (j) Marshall, J. A.; Ellis,
K. Tetrahedron Lett. 2004, 45, 1351–1353. (k) Cantagrel, G.; Meyer, C.;
Cossy, J. Synlett 2007, 2983–2986. (l) Barbazanges, M.; Meyer, C.;
Cossy, J. Org. Lett. 2008, 10, 4489–4492. (m) Handa, M.; Scheidt,
K. A.; Bossart, M.; Zheng, N.; Roush, W. R. J. Org. Chem. 2008, 73,
1031–1035.
(6) Representative examples include aspicilin; see: (a) Hesse, O.
J. Prakt. Chem. 1900, 62, 430–480. (b) Huneck, S.; Schreiber, K.; Steglich,
W. Tetrahedron 1973, 29, 3687–3693. For erythromycin A, see: (c) Pal, S.
Tetrahedron 2006, 62, 3171–3200. For triyne carbonate L-660,631, see:
(d) Lewis, M. D.; Menes, R. Tetrahedron Lett. 1987, 28, 5129–5132. (e)
Wright, J. J.; Puar, M. S.; Pramanik, B.; Fishman, A. J. Chem. Soc.,
Chem. Commun. 1988, 413–414. (f) Lewis, M. D.; Duffy, J. P.; Heck, J. V.;
Menes, R. Tetrahedron Lett. 1988, 29, 2279–2282. (g) Yadav, J. S.;
Rajagopal, D. Tetrahedron Lett. 1990, 31, 5077–5080. For penarolide
sulfate A1, see: (h) Nakao, Y.; Maki, T.; Matsunaga, S.; van Soest,
R. W. M.; Fusetani, N. Tetrahedron 2000, 56, 8977–8987. (i) Mohapatra,
D. K.; Bhattasali, D.; Gurjar, M. K.; Khan, M. I.;Shashidhara, K. S. Eur.
J. Org. Chem. 2008, 6213–6224.
€
ꢀ
r
10.1021/ol203114a
Published on Web 01/04/2012
2012 American Chemical Society