ACS Medicinal Chemistry Letters
Page 6 of 7
H.; Schneider-Stock, R.; Tsogoeva, S. B. Synthesis of Novel Hybrids
of Thymoquinone and Artemisinin with High Activity and Selectivity
Against Colon Cancer. Chem. Med. Chem. 2017, 12, 226-234.
DEDICATION
1
This paper is dedicated to Professor Andreas Seidel-Morgenstern.
2
3
4
5
6
7
8
17. Höfle,
G.;
Steglich,
W.;
Vorbrüggen,
H.
4-Dialkylaminopyridines as Highly Active Acylation Catalysts. [New
synthetic method (25)]. Angew. Chem. Int. Ed. 1978, 17, 569-583.
18. Wu, Z.; Minhas, G. S.; Wen, D.; Jiang, H.; Chen, K.; Zimniak,
P.; Zheng, J. Design, Synthesis, and Structure−Activity Relationships
of Haloenol Lactones:ꢀ Site-Directed and Isozyme-Selective
Glutathione S-Transferase Inhibitors. J. Med. Chem. 2004, 47, 3282-
3294.
ABBREVIATIONS
DBU, 1,8-Diazabicyclo[5.4.0]undec-7-en; DCC, N,N’-dicyclo-
hexylcarbodiimide; DHA, dihydroartemisinin; DHU, 1,3-dicyclo-
hexylurea; DMAP, 4-(dimethylamino)pyridine; HCMV, human
cytomegalovirus; n.a., not active; TMSOTf, trimethylsilyl triflate;
TQ, thymoquinone.
9
19. Blanchet, J.; Baudoux, J.; Amere, M.; Lasne, M.-C.; Rouden,
J. Asymmetric Malonic and Acetoacetic Acid Syntheses – A Century
of Enantioselective Decarboxylative Protonations. Eur. J. Org. Chem.
2008, 2008, 5493-5506.
20. Okrasa, K.; Levy, C.; Wilding, M.; Goodall, M.; Baudendistel,
N.; Hauer, B.; Leys, D.; Micklefield, J. Structure-Guided Directed
Evolution of Alkenyl and Arylmalonate Decarboxylases. Angew.
Chem. Int. Ed. 2009, 48, 7691-7694.
21. Lafrance, D.; Bowles, P.; Leeman, K.; Rafka, R. Mild
Decarboxylative Activation of Malonic Acid Derivatives by
1,1′-Carbonyldiimidazole. Org. Lett. 2011, 13, 2322-2325.
22. Lebedyeva, I. O.; Biswas, S.; Goncalves, K.; Sileno, S. M.;
Jackson, A. R.; Patel, K.; Steel, P. J.; Katritzky, A. R. One-Pot
Decarboxylative Acylation of N-, O-, S-Nucleophiles and Peptides
with 2,2-Disubstituted Malonic Acids. Chem. Eur. J. 2014, 20, 11695-
11698.
23. Breyer, S.; Effenberger, K.; Schobert, R. Effects of
thymoquinone-fatty acid conjugates on cancer cells. Chem. Med.
Chem. 2009, 4, 761-8.
24. Posner, G. H.; Paik, I.-H.; Sur, S.; McRiner, A. J.; Borstnik,
K.; Xie, S.; Shapiro, T. A. Orally Active, Antimalarial, Anticancer,
Artemisinin-Derived Trioxane Dimers with High Stability and
Efficacy. J. Med. Chem. 2003, 46, 1060-1065.
25. Fröhlich, T.; Çapcı Karagöz, A.; Reiter, C.; Tsogoeva, S. B.
Artemisinin-Derived Dimers: Potent Antimalarial and Anticancer
Agents. J. Med. Chem. 2016, 59, 7360-7388.
26. Krusic, P. J.; Wasserman, E.; Keizer, P. N.; Morton, J. R.;
Preston, K. F. Radical reactions of C60. Science 1991, 254, 1183-5.
27. Bakry, R.; Vallant, R. M.; Najam-ul-Haq, M.; Rainer, M.;
Szabo, Z.; Huck, C. W.; Bonn, G. K. Medicinal applications of
fullerenes. Int. J. Nanomedicine 2007, 2, 639-649.
28. Saab, A. M.; Guerrini, A.; Sacchetti, G.; Maietti, S.; Zeino, M.;
Arend, J.; Gambari, R.; Bernadi, F.; Efferth, T. Phytochemical analysis
and cytotoxicity towards multidrug-resistant leukemia cells of essential
oils derived from Lebanese medicinal plants. Planta Med. 2012, 78,
1927-1931.
29. Held, F. E.; Guryev, A. A.; Fröhlich, T.; Hampel, F.; Kahnt, A.;
Hutterer, C.; Steingruber, M.; Bahsi, H.; von Bojničić-Kninski, C.;
Mattes, D. S.; Foertsch, T. C.; Nesterov-Mueller, A.; Marschall, M.;
Tsogoeva, S. B. Facile access to potent antiviral quinazoline
heterocycles with fluorescence properties via merging metal-free
domino reactions. Nature Commun. 2017, 8, 15071.
30. Hutterer, C.; Niemann, I.; Milbradt, J.; Fröhlich, T.; Reiter, C.;
Kadioglu, O.; Bahsi, H.; Zeitträger, I.; Wagner, S.; Einsiedel, J.;
Gmeiner, P.; Vogel, N.; Wandinger, S.; Godl, K.; Stamminger, T.;
Efferth, T.; Tsogoeva, S. B.; Marschall, M. The broad-spectrum
antiinfective drug artesunate interferes with the canonical nuclear
factor kappa B (NF-kappaB) pathway by targeting RelA/p65. Antiviral
Res. 2015, 124, 101-109.
31. Marschall, M.; Freitag, M.; Weiler, S.; Sorg, G.; Stamminger,
T. Recombinant Green Fluorescent Protein-Expressing Human
Cytomegalovirus as a Tool for Screening Antiviral Agents. Antimicrob.
Agents Chemother. 2000, 44, 1588-1597.
REFERENCES
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
1. Tietze, L. F.; Bell, H. P.; Chandasekhar, S. Natural Product
Hybrids as New Leads for Drug Discovery. Angew. Chem. Int. Ed.
2003, 42, 3996-4028.
2. Muregi, F. W.; Ishih, A. Next-Generation Antimalarial Drugs:
Hybrid Molecules as a New Strategy in Drug Design. Drug Dev. Res.
2010, 71, 20-32.
3. Miranda, D.; Capela, R.; Albuquerque, I. S.; Meireles, P.;
Paiva, I.; Nogueira, F.; Amewu, R.; Gut, J.; Rosenthal, P. J.; Oliveira,
R.; Mota, M. M.; Moreira, R.; Marti, F.; Prudêncio, M.; O’Neill, P. M.;
Lopes, F. Novel Endoperoxide-Based Transmission-Blocking
Antimalarials with Liver- and Blood-Schizontocidal Activities. ACS
Med. Chem. Lett. 2013, 5, 108-112.
4. Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.;
Barreiro, E. J.; Fraga, C. A. Molecular hybridization: a useful tool in
the design of new drug prototypes. Curr. Med. Chem. 2007, 14, 1829-
1852.
5. Tsogoeva, S. B. Recent Progress in the Development of
Synthetic Hybrids of Natural or Unnatural Bioactive Compounds for
Medicinal Chemistry. Mini Rev. Med. Chem. 2010, 10, 773-793.
6. Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from
Chinese medicine. Nat. Med. 2011, 17, 1217-1220.
7. El–Dakhakhny, M. Studies on the chemical constitution of
Egyptian Nigella Sativa L. seeds. II) The essential oil. Planta Med.
1963, 11, 465-470.
8. Efferth, T. Molecular pharmacology and pharmacogenomics
of artemisinin and its derivatives in cancer cells. Curr. Drug Targets
2006, 7, 407-421.
9. Schneider-Stock, R.; Fakhoury, I. H.; Zaki, A. M.; El-Baba, C.
O.; Gali-Muhtasib, H. U. Thymoquinone: fifty years of success in the
battle against cancer models. Drug Discov. Today 2014, 19, 18-30.
10. Li, Y.; Wu, Y. L. An over four millennium story behind
Qinghaosu (artemisinin):
traditional Chinese herb. Curr. Med. Chem. 2003, 10, 2197-2230.
a fantastic antimalarial drug from a
11. Efferth, T.; Romero, M. R.; Wolf, D. G.; Stamminger, T.;
Marin, J. J.; Marschall, M. The antiviral activities of artemisinin and
artesunate. Clin. Infect. Dis. 2008, 47, 804-811.
12. Miller, L. H.; Su, X. Artemisinin: Discovery from the Chinese
Herbal Garden. Cell 2011, 146, 855-858.
13. Reiter, C.; Fröhlich, T.; Gruber, L.; Hutterer, C.; Marschall,
M.; Voigtländer, C.; Friedrich, O.; Kappes, B.; Efferth, T.; Tsogoeva,
S. B. Highly potent artemisinin-derived dimers and trimers: Synthesis
and evaluation of their antimalarial, antileukemia and antiviral
activities. Bioorg. Med. Chem. 2015, 23, 5452-5458.
14. Reiter, C.; Fröhlich, T.; Zeino, M.; Marschall, M.; Bahsi, H.;
Leidenberger, M.; Friedrich, O.; Kappes, B.; Hampel, F.; Efferth, T.;
Tsogoeva, S. B. New efficient artemisinin derived agents against
human leukemia cells, human cytomegalovirus and Plasmodium
falciparum: 2nd generation 1,2,4-trioxane-ferrocene hybrids. Eur. J.
Med. Chem. 2015, 97, 164-172.
15. Fröhlich, T.; Reiter, C.; Ibrahim, M. M.; Beutel, J.; Hutterer,
C.; Zeitträger, I.; Bahsi, H.; Leidenberger, M.; Friedrich, O.; Kappes,
B.; Efferth, T.; Marschall, M.; Tsogoeva, S. B. Synthesis of Novel
Hybrids of Quinazoline and Artemisinin with High Activities against
Plasmodium falciparum, Human Cytomegalovirus, and Leukemia
Cells. ACS Omega 2017, 2, 2422-2431.
32. Marschall, M.; Niemann, I.; Kosulin, K.; Bootz, A.; Wagner,
S.; Dobner, T.; Herz, T.; Kramer, B.; Leban, J.; Vitt, D.; Stamminger,
T.; Hutterer, C.; Strobl, S. Assessment of drug candidates for broad-
spectrum antiviral therapy targeting cellular pyrimidine biosynthesis.
Antiviral Res. 2013, 100, 640-648.
16. Fröhlich, T.; Ndreshkjana, B.; Muenzner, J. K.; Reiter, C.;
Hofmeister, E.; Mederer, S.; Fatfat, M.; El-Baba, C.; Gali-Muhtasib,
ACS Paragon Plus Environment