220
A. Yu. Spivak et al. / Tetrahedron Letters 53 (2012) 217–221
6. Spivak, A. Yu.; Shakurova, E. R.; Nedopekina, D. A.; Khalitova, R. R.; Khalilov, L.
M.; Odinokov, V. N.; Belsky, Y. P.; Ivanova, A. N.; Belska, N. V.; Danilets, M. G.;
Ligatcheva, A. A. Russ. Chem. Bull. Int. Ed. 2011, 60, 694.
posite method. Therefore, the BHLYP functional combined with the
Danning basis set with cc-pVTZ triple splitting was chosen as the
main calculation method.
7. Taniguchi, T.; Ishibashi, H. Org. Lett. 2010, 12, 124.
Calculations of relative Gibbs energies of the b-TS– and
a
-TS–
8. Taniguchi, T.; Goto, N.; Nishibata, A.; Ishibashi, H. Org. Lett. 2010, 12, 112.
9. Yamamoto, Y.; Nakagai, Y.; Ohkoshi, N.; Itoh, K. J. Am. Chem. Soc. 2001, 123,
6372.
10. Okamoto, S.; Livinghouse, T. Organometallics 2000, 19, 1449.
11. Gurjar, M. K.; Ravindranadt, S. V.; Sankar, K.; Karmakar, S.; Cherian, J.;
Chorghade, M. S. Org. Biomol. Chem. 2003, 1, 1366.
transition states for the two pathways of the first cyclization steps
of model compound 10 (Table 3 in Supplementary data) showed
the preferability of nitrogen dioxide reaction with the allyl substi-
tuent in compound 10 having an equatorial configuration (b-orien-
tation of the allyl moiety in 1) to give intermediate 50 (Fig. 4). The
12. Typical procedure: To a solution of 1 (0.10 g, 0.18 mmol) and FeCl3 (0.04 g,
0.27 mmol) or LiCl (0.01 g, 0.27 mmol) in THF (3 ml) was added Fe(NO3)3ꢀ9H2O
(0.09 g, 0.22 mmol), and the mixture was heated at reflux for 3 h. After cooling
to room temperature, the resulting suspension was diluted with EtOAc (5 ml)
and filtered. After removal of solvent under reduced pressure, the residue was
purified by silica gel chromatography (CHCl3) to give 3 (0.07 g, 65%) as a
mixture of diastereomeres. Re-chromatography on SiO2 (hexane:EtOAc, 30?1)
separate of 3a (0.04 g, 60% relative to initial diastereomeric mixture 3. Methyl
3-oxo-3’S-(chloromethyl)-4’R-(nitromethyl)spiro[2(1’)R-cyclopentane]-dihydr
obetulonate (3a): White solid mp = 160–162 °C (EtOH), [a2D0] + 30.30 (c 1.12,
ratio of the rate constants (kb/k = 3, T = 338 K) calculated using the
a
Eyring equation and the relative nonequilibrium Gibbs energy
(
DDG– -b). Hence, based on the data for model compound 10, it
a
can be assumed that the formation of four diastereomers 3a–d
with an R-configuration of the C-2 spiro atom is preferential in
the series of isomeric compounds 3.
CHCl3). IR (m
/cmꢁ1): 1760 (C@O). MS, m/z 654.98 [M+Na]+, 670.96 [M+K]+. Anal.
In calculations of the relative Gibbs energies for transition
–
states 6a0 –d0– (Table 4 in Supplementary data) that lead to model
Calcd for C37H58ClNO5: C, 70.28; H, 9.25; Cl, 5.61; N, 2.22. Found: C, 70.03; H,
9.72; Cl, 5.66; N, 2.52. 1H NMR (400 MHz, CDCl3): d 0.71, 0.95, 0.99, 1.10, 1.12
(all s, 3H each, H(25), H(26), H(27), H(24), H(23)), 0.77, 0.88 (both d, J = 6.0 Hz,
3H each, H(30), H(29)), 1.18 (m, 1H, Ha(15)), 1.19 (m, 1H, Ha(21)), 1.22 (m, 1H,
Ha(12)), 1.24 (m, 1H, Ha(22)), 1.36 (m, 1H, Ha(11)), 1.37 (m, 1H, Ha(16), 1H,
Hb(15); 2H, H(5)), 1.39 (m, 1H, H(18)), 1.43 (m, 2H, H(6)), 1.44 (m, 2H, H(7)),
1.50 (d, 2J = 13.0 Hz, 1H, Ha(1)), 1.51 (m, 1H, Hb(11)), 1.56 (m, 1H, H(9)), 1.60
(m, 1H, Ha(5’)), 1.73 (m, 1H, Hb(12), 1H, Ha(2’)), 1.82 (m, 1H, Hb(20), 1H, Hb(21),
1H, Hb(22)), 2.02 (m, 1H, Hb(2’)), 2.04 (d, 2J = 13.0 Hz, 1H, Hb(1)), 2.24 (m, 1H,
H(19)), 2.25 (m, 1H, Hb(16)), 2.27 (m, 1H, H(13)), 2.43 (dd, 2J = 13.0 Hz,
3J = 8.0 Hz, 1H, Hb(5’)), 2.71 (sext, 3J = 8.0 Hz, 1H, H(3’)), 3.01 (sext, 3J = 8.0 Hz,
1H, H(4’)), 3.53 (dd, 2H, 2J = 14.0 Hz, 3J = 7.0 Hz, CH2Cl), 3.67 (s, 3H, OMe), 4.46,
4.65 (both dd, 2J = 13.0 Hz, 3J = 8.0 Hz, 2H, CH2NO2). 13C NMR (100 MHz,
CDCl3): d 14.53 (C(27)), 14.69 (C(30)), 15.50 (C(26)), 15.75 (C(25)), 20.36 (C(6)),
21.87 (C(11)), 22.56 (C(24)), 22.96 (C(29)), 27.02 (C(12)), 29.58 (C(21)), 29.69
(C(15)), 29.76 (C(20)), 30.25 (C(23)), 32.00 (C(16)), 33.08 (C(7)), 37.28 (C(22)),
37.97 (C(4’)), 38.23 (C(13)), 40.46 (C(2)), 40.48 (C(8)), 42.66 (C(14)), 43.13
(C(3’)), 44.13 (C(19)), 44.45 (CH2Cl), 45.00 (C(5’)), 45.87 (C(4)), 48.10 (C(2’)),
48.36 (C(5)), 48.83 (C(18)), 51.21 (OMe), 51.52 (C(10)), 53.21 (C(9)), 55.93
(C(1)), 56.98 (C(17)), 75.81 (CH2NO2), 176.81 (C(28)), 221.23 (C(3)). Benzyl 3-
oxo-3’S-(chloromethyl)-4’R-(nitromethyl)spiro[2(1’)R-cyclopentane]-dihyd
–
compounds 3a0–d0, the relative energies of transition states 6a0
–
and 6c0 were refined by the G3MP2B3 composite method in
accordance with published recommendations.14 As one can see
–
from Figure 4, transition state 6a0 that leads to isomer 3a0 has
the lowest energy barrier. The DDG–
value was found to be
c–a
8.1 kJ/mol. The reaction rate ratio ka/kc = 15 (T = 338 K) calculated
from this value, that is, the rate constant of cyclization that occurs
toward model compound 3a0 or reaction product 3a is by an order
of magnitude higher than the rate constants for the competing
pathways. Hence, the experimentally observed formation of cis-
isomers 3a and 4a of spirocyclopentane derivatives of betulonates
can be reasonably explained by analyzing data obtained in the
framework of theoretical studies, which eliminate the apparent
contradiction noted above between the isomerism thermodynam-
ics and NMR data for diastereomeric mixtures of compounds 3 or 4.
To conclude, we have synthesized hitherto unknown spirocyclic
derivatives of lupane terpenoids. Theoretical analysis of the reac-
tion mechanism allowed us to establish the most probable struc-
tures of major reaction products 3a and 4a that were isolated in
individual form from diastereomeric mixtures: methyl 3-oxo-3’S-
(chloromethyl)-4’R-(nitromethyl)spiro[2(1’)R-cyclopentane]-dihyd
robetulonate (3a) and benzyl 3-oxo-3’S-(chloromethyl)-4’R-
(nitromethyl)spiro[2(1’)R-cyclopentane]-dihydrobetulonate (4a).
robetulonate (4a): White solid mp = 120–122 °C (EtOH), ½a D20
ꢂ
+ 37.50 (c 0.08,
CHCl3). IR (m
/cmꢁ1): 1725 (C@O). MS, m/z 730.40 [M+Na]+, 746.37 [M+K]+. Anal.
Calcd for C43H62ClNO5: C, 72.90; H, 8.82; Cl, 5.00; N, 1.98. Found: C, 72.52; H,
8.44; Cl, 5.21; N, 1.89. 1H NMR (400 MHz, CDCl3): d 0.73, 0.93, 0.98, 1.09, 1.12
(all s, 3H each, H(25), H(26), H(27), H(24), H(23)), 0.88, 0.90 (both d, J = 6.0 Hz,
3H each, H(30), H(29)), 1.21–2.32 (m, 28H, CH, CH2 in the betulin residue), 2.43
(dd, 2J = 13.0 Hz, 3J = 8.0 Hz, 1H, H(5’)), 2.71 (sext, 3J = 8.0 Hz, 1H, H(3’)), 3.01
(sext, 3J = 8.0 Hz, 1H, H(4’)), 3.52 (dd, 2J = 14.0 Hz, 3J = 7.0 Hz, 2H, CH2Cl), 4.46,
4.64 (both dd, 2J = 13.0 Hz, 3J = 8.0 Hz, 2H, CH2NO2), 5.08–5.17 (m, 2H,
OCH2Ph); 7.32–7.37 (m, 10H, Ph). 13C NMR (100 MHz, CDCl3):
d 14.49
(C(27)), 14.68 (C(30)), 15.37 (C(26)), 15.74 (C(25)), 20.35 (C(6)), 21.86
(C(11)), 22.55 (C(24)), 22.96 (C(29)), 27.04 (C(12)), 28.44 (C(21)), 29.46
(C(15)), 29.76 (C(20)), 30.25 (C(23)), 31.95 (C(16)), 33.07 (C(7)), 36.85
(C(22)), 37.26 (C(4’)), 37.97 (C(13)), 38.17 (C(2)), 40.46 (C(8)), 42.67 (C(14)),
43.13 (C(3’)), 44.13 (C(19)), 44.45 (CH2Cl), 45.00 (C(5’)), 45.86 (C(4)), 48.09
(C(2’)), 48.36 (C(5)), 48.82 (C(18)), 51.51 (C(10)), 53.21 (C(9)), 55.93 (C(1)),
56.95 (C(17)), 65.65 (CH2-Ph), 75.82 (CH2NO2), 128.03, 128.28, 128.47, 136.55
(Ph), 175.95 (C(28)), 221.25 (C(3)).
Acknowledgments
This work was financially supported by the Russian Foundation
for Basic Research (Project No. 10_03_00105), the Division of
Chemistry and Materials Science of the Russian Academy of Sci-
ences (Program ‘Medicinal and Biomolecular Chemistry’), and the
Ministry of Education and Science of the Russian Federation (Fed-
eral Target Program ‘Scientific and Pedagogical Manpower of Inno-
vative Russia’ for 2009–2013, State Contract No. 14.740.11.0014).
13. Conformations of the structures in question were calculated by the B3LYP/6-
31G(d) method.15–17 In the case of the most stable isomers, the structures were
additionally optimized and the vibrational problem was solved in the B3LYP/6-
311G(d,p) approximation.18 Transition states were localized using the B3LYP/
6-311G(d,p), BHandHLYP/cc-pVTZ,19,20 and G3MP2B321 methods. Energy
parameters of the compounds were calculated at 298 K. Nonspecific
solvation by the solvent (tetrahydrofuran) was taken into account in the
framework of the polarized continuum method22 in the BHLYP/cc-pVTZ
approximation. Calculations were performed using Gaussian 09 software,
Revision A.01.23
Supplementary data
Supplementary data associated with this article can be found, in
14. Tripp, J. C.; Schiesser, C. H.; Curran, D. P. J. Am. Chem. Soc. 2005, 127, 5518.
15. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
16. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B. 1988, 37, 785.
17. Hariharan, P. C.; Pople, J. A. Theor. Chem. Acc. 1973, 28, 213.
18. Raghavachari, K.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72,
650.
References and notes
´
1. Tolstikov, G. A.; Flekhter, O. B.; Shults, E. E.; Baltina, L. A.; Tolstikov, A. G.
19. Becke, A. D. J. Chem. Phys. 1993, 98, 1372.
Khimiya v interesakh ustoichivogo razvitiya [Chemistry for Sustained Evolution]
2005, 13, 1 (in Russian).
20. Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.
21. Baboul, A. G.; Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys. 1999,
110, 7650.
22. Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327.
23. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, Scalmani, J. R. G.; Barone, V.; Mennucci, B.; Petersson, G. A.;
Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;
Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven,
2. Yogeeswari, P.; Sriram, D. Curr. Med. Chem. 2005, 12, 657.
3. Mukherjee, R.; Kumar, V.; Srivastava, S. K.; Agarwal, S. K.; Burman, A. C. Anti-
Cancer agents Med. Chem. 2006, 6, 271.
4. Urban, M.; Sarek, J.; Klinot, J.; Korinkova, G.; Hajduch, M. J. Nat. Prod. 2004, 67,
1100.
5. Honda, T.; Liby, K. T.; Su, X.; Sundararajan, Ch.; Honda, Y.; Suh, N.; Risingsong,
R.; Williams, Ch. R.; Royce, D. B.; Sporn, M. B.; Gribble, G. W. Bioorg. Med. Chem.
Lett 2006, 15, 6306.