10.1002/anie.201905333
Angewandte Chemie International Edition
COMMUNICATION
National Institutes of Health under instrumentation grant no.
1S10OD016387-01.
were pleased to find that the addition of a mixture of random
sequence R1 and complement cCTH5 to latent catalyst 5, led to
a 1.5-fold increase in fluorescence, a significant increase in
reactivity when compared to complex 5 alone (Figure 4d). In
addition, complex 6 showed significant catalytic activity in
solutions of urine or saliva, with nearly a 2-fold and 4-fold
increase in yield, respectively. This result is especially
remarkable due to the fact that these solutions contain albumin,
an enzyme with a considerable amount of sulfur containing
residues,[37] and urea, a small molecule well known to denature
DNA.[38]
Keywords: DNAzyme • metal-mediated base pair • Au(I)-
catalyzed hydroamination • biocatalysis
[1] T. Hudlicky, J. W. Reed, Chem. Soc. Rev. 2009, 38, 3117; K. M. Koeller,
C. H. Wong, Nature 2001, 409, 232.
[2] F. C. Huang, L. F. Hsu Lee, R. S. D. Mittal, P. R. Ravikumar, J. A. Chan,
C. J. Sih, E. Caspi, C. R. Eck, J. Am. Chem. Soc. 1974, 97, 4144.
[3] G. M. Whitesides, C. -H. Wong, Angew. Chem. Int. Ed. 1985, 24, 617.
[4] W. -D. Fessner, C. Walter, Angew. Chem. Int. Ed. 1992, 31, 614.
[5]
J. H. Schrittwieser, S. Vilkogne, M. Hall, W. Kroutil, Chem. Rev. 2018,
118, 270.
[6] M. D. Mihovilovic, G. Chen, S. Wang, B. Kyte, F. Rochon, M. M. Kayser,
J. D. Stewart, J. Org. Chem. 2001, 66, 733.
[7] J. Wachtmeister, D. Rother, Curr. Opin. Biotechnol. 2016, 42, 169.
In living organisms, it is known that small RNA sequences
selectively bind to complementary nucleic acids and promote
nucleotide degradation via the recruitment of active enzymes.
These systems in which small RNA sequences modulate gene
expression have been utilized as biological tools and
therapeutics.[39] We envisioned an analogous system in which
our DNA-Au complex could be regulated by small RNA
sequences, ultimately controlling the chemical reactivity of
transition metal DNAzymes. Gratifyingly, the addition of a short
complementary RNA strand (RcCTH5) to latent Au-DNA catalyst
5 results in nearly a 6-fold increase in yield, akin to the DNA-
based complement (cCTH5) (Figure 4e). This increase in
fluorescence, likely due the formation of a hybrid DNA-RNA
complex, demonstrates that there is potential for the use of this
type of system to perform catalytic reactions in response to gene
transcription.
[8]
M. Jeschek, R. Reuter, T. Heinisch, C. Tindler, J. Klehr, S. Panke, T. R.
Ward, Nature 2016, 7, 661.
[9]
H. M. Key, P. Dydio, D. S. Clark, J. F. Hartwig, Nature 2016, 534, 534;
P. Dydio, H. M. Key, H. Hayashi, D. S. Clark, J. F. Hartwig, J. Am.
Chem. Soc. 2017, 139, 1750; P. S. Coelho, E. M. Brustad, A. Kanna, F.
H. Arnold, Science 2013, 339, 307.
[10] K. Chen, F. H. Arnold, Nat. Biotechnol. 1991, 9, 1073.
[11] P. Dydio, H. M. Key, A. Nazarenko, J. Y. Rha, D. S. Clark, J. F. Hartwig,
Science 2016, 354, 102.
[12] M. E. Wilson, G. M. Whitesides, J. Am. Chem. Soc. 1978, 100, 306.
[13] A. Illie, M. T. Reetz, Isr. J. Chem. 2015, 55, 51.
[14] A. J. Boersma, J. E. Klijn, B. L. Feringa, G. Roelfes, J. Am. Chem. Soc.
2008, 130, 11783; D. K. Prusty, M. Kwak, J. Wildeman, A. Herrmann,
Angew. Chem. Int. Ed. 2012, 51, 11894.
[15] P. K. Sasmal, C. N. Streu, E. Meggers, Chem. Commun. 2013, 49, 1581.
[16] G. F. Joyce, Nature 1989, 338, 217.; Higgs, P. G.; Lehman, N. Nat. Rev.
Genet. 2015, 16, 7.
[17] J. K. Barton, Metal/Nucleic Acid Interactions. Bioinorganic Chemistry.
University Press, 455 (1994).
[18] W. Zhou, R. Saran, J. Liu, Chem. Rev. 2017, 117, 8272.
[19] Y. Takezawa, M. Shionoya, Acc. Chem. Res. 2012, 45, 2066.
[20] P. M. Pil, S. J. Lippard, Science 1992, 256, 234.
[21] A. N. Boynton, L. Marcelis, J. K. Barton, J. Am. Chem. Soc. 2016, 138,
5020.; J. L. Kisko, J. K. Barton, J. K. Inorg. Chem. 2000, 39, 4942.
[22] M. Su, M. Tomas-Gamasa, T. Carell, Chem. Sci. 2015, 6, 632.
[23] A. Ono, S. Cao, H. Togashi, M. Tashiro, T. Fujimoto, T. Machinami, S.
Oda, Y. Miyake, I. Okamoto, Y. Tanaka, Y. Chem. Commun. 2008, 39,
4825.
[24] Y. Miyake, H. Togashi, M. Tashiro, H. Yamaguchi, S Oda, M. Kudo, Y.
Tanaka, Y. Kondo, R. Sawa, T. Fujimoto, T. Machinami, A. Ono, J. Am.
Chem. Soc. 2006, 128, 2172.; J. Kondo, T. Yamada, C. Hirose, I.
Okamoto, Y. Tanka, A. Ono, Angew. Chem. Int. Ed. 2014, 53, 2385.
[25] H. Liu, et al, Nucleic Acids Res. 2017, 45, 2910.; O. P. Schmidt, A. S.
Benz, G. Mata, N. W. Luedtke, N. W. Nucleic Acids Res. 2018, 46, 6470.
[26] A. Ono, H. Torigo, Y. Tanaka, I. Okamoto, Chem. Soc. Rev. 2011, 40,
5855.
The synergy of synthetic catalysts and biomolecules
remains underdeveloped in chemistry and biology. There are
several potential applications for such biocommunicative
transition metal species, including the development of chemical
biology probes capable of signal amplification through catalyst
turnover, the ability to treat diseases through gene-specific
cytotoxic reactions and catalytic formation of therapeutics in
targeted cells, and the construction of biosynthetic pathways
featuring abiotic chemical transformations. This work represents
an early proof-of-principle study where the innately abiotic
reactivity of a transition metal catalyst can be regulated through
interactions with native biological molecules such as DNA and
RNA.
[27] I. Ott, Coord. Chem. Rev. 2009, 253, 1670.
[28] E. R. Tiekink, Crit. Rev. Oncol. Hematol. 2002, 42, 225.
[29] C. E. Blank, J. C. Dabrowiak, J. Inorg. Biochem. 1984, 21, 21.
[30] N. Hadjiliadis, G. Pneumatikakis, R. Basosi, J. Inorg. Biochem. 1981, 14,
115.; M. Bressan, R. Ettorre, P. Rigo, J. Magn. Reson. 1977, 26, 43.; R.
Faggiani, H. E. Howard-Lock, C. J. L. Lock, M. A. Turner, Can. J. Chem.
1987, 65, 1568.; Y. Rosopulos, U. Nagel, W. Beck, Chem. Ber. 1985,
118, 931.
[31] E. Ennifar, P. Walter, P. Dumas, Nucleic Acids Res. 2003, 31, 2671.
[32] N. Zimmerman, E. Meggers, P. G. Schultz, J. Am. Chem. Soc. 2002,
124, 13684.
[33] J. –B. Wang, Q. –Q. Wu, Y. –Z. Min, Y. –Z. Liu, Q. –H. Song, Chem.
Commun. 2012, 5, 744.
Acknowledgements
[34] P. Fremont, N. M. Scott, E. D. Stevens, S. P. Nolan, Organometallics
2005, 24, 2411.
[35] P. J. Barnard, M. V. Baker, S. J. Berners-Price, B. W. Skelton, A. H.
White, J. Chem. Soc., Dalton Trans. 2004, 7, 1038.; D. Bhattacharyya, G.
Financial support was generously provided by the Packard
Foundation and Pew Charitable Trusts (to H. M. N.). The
authors thank Prof. F. Dean Toste (UC Berkeley) for inspiration.
We also thank Dr. Jeff Vieregg (University of Chicago) for useful
discussions. The authors thank the UCLA Molecular
Instrumentation Center for NMR instrumentation and Mass
Spectrometry. This material is based on work supported by the
M.
Arachchilage,
S.
Basu,
Front.
Chem.
2016,
4,
doi:10.3389/fchem.2016.00038.
[36] O. V. Kharissova, H. V. R. Dias, B. I. Kharisov, B. O. Pèrez, V. M. J.
Pèrez, Trends Biotechnol. 2013, 31, 240.
[37] D. C. Carter, J. X. Ho, Adv. Protein Chem. 1994, 45, 153.
[38] T. T. Herskovits, Biochemistry 1963, 2, 335.
[39] M. T. McManus, P. A. Sharp, Nat. Rev. Genet. 2002, 3, 737.
This article is protected by copyright. All rights reserved.