584
X.-F. Wu et al. / Tetrahedron Letters 53 (2012) 582–584
A. M.; Scheidt, K. A. J. Org. Chem. 2006, 71, 5715–5724; (k) Cunico, R. F.; Pandey,
R. K. J. Org. Chem. 2005, 70, 5344–5346; (l) Lettan, R. B., II; Galliford, C. V.;
Woodward, C. C.; Scheidt, K. A. J. Am. Chem. Soc. 2009, 131, 8805–8814; (m)
LettanII, R. B.; Reynolds, T. E.; Galliford, C. V.; Scheidt, K. A. J. Am. Chem. Soc.
2006, 128, 15566–15567; (n) Obora, Y.; Ogawa, Y.; Imai, Y.; Kawamura, T.; Tsuji,
Y. J. Am. Chem. Soc. 2001, 123, 10489–10493; (o) Galliford, C. V.; Scheidt, K. A.
Chem. Commun. 2008, 1926–1928; (p) Lettan, R. B., II; Woodward, C. C.; Scheidt,
K. A. Angew. Chem., Int. Ed. 2008, 47, 2294–2297.
transformed into corresponding acyl silanes in good yields (Table
3, entries 2–5). In addition, 52% of 1-naphthoyltrimethyl silane
was produced under our standard conditions (Table 3, entry 6).
Fluoride-, chloride-, and bromide-substituted iodobenzenes were
smoothly carbonylated to the corresponding benzoyl silanes in
the range of 41–74% yield (Table 3, entries 7–10). However, cyano-
and acetyl-substituted aryl iodides gave only traces of the desired
products. Similarly, 3-iodopyridine gave the desired product only
in traces. Notably, the reaction of bromobenzene with HMDS did
not give any desired product under our standard conditions, and
bromobenzene was recovered as it is.
In conclusion, the first catalytic carbonylation of aryl iodides
toward benzoyl silanes has been developed. Notably, electron-poor
phosphites or triphenylarsine has to be applied as ligands in order to
achieve the desired transformation. Under optimized conditions ten
aryl iodides with both electron-donating and electron-withdrawing
substituents were carbonylated to the corresponding benzoyl
silanes in 41–88% yield.
3. (a) Yamamoto, K.; Hayashi, A.; Suzuki, S.; Tsuji, J. Organometallics 1987, 6, 974–
979; (b) Kang, J.; Lee, J. H.; Kim, K. S.; Jeong, J. U.; Pyun, C. Tetrahedron Lett. 1987,
28, 3216–3262; (c) Katritzky, A. R.; Wang, Z.; Lang, H. Organometallics 1996, 15,
486–490; (d) Suda, K.; Watanabe, J.-I.; Takanami, T. Tetrahedron Lett. 1992, 33,
1355–1356; (e) Capperucci, A.; Degl’Innocenti, A.; Faggi, C.; Ricci, A. J. Org. Chem.
1988, 53, 3612–3614; (f) Linderman, R. J.; Suhr, Y. J. Org. Chem. 1988, 53, 1569–
1572; (g) Seyferth, D.; Hui, R. C.; Wang, W.-L. J. Org. Chem. 1993, 58, 5843–5845;
(h) Seyferth, D.; Weinstein, R. M. J. Am. Chem. Soc. 1982, 104, 5534–5535; (i)
Geng, F.; Maleczka, R. E., Jr. Tetrahedron Lett. 1999, 40, 3113–3114.
4. (a) Wu, X.-F.; Neumann, H.; Beller, M. ChemCatChem 2010, 2, 509–513; (b) Wu,
X.-F.; Neumann, H.; Beller, M. Chem. Eur. J. 2010, 16, 9750–9753; (c) Wu, X.-F.;
Neumann, H.; Beller, M. Chem. Asian J. 2010, 5, 2168–2172; (d) Wu, X.-F.;
Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 5284–5288; (e) Wu, X.-
F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 7316–
7319; (f) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Eur. J. 2010, 16, 12104–
12107; (g) Wu, X.-F.; Neumann, H.; Beller, M. Tetrahedron Lett. 2010, 51, 6146–
6149; (h) Wu, X.-F.; Neumann, H.; Spannenberg, A.; Schulz, T.; Jiao, H.; Beller, M.
J. Am. Chem. Soc. 2010, 132, 14596–14602; (i) Wu, X.-F.; Sundararaju, B.;
Neumann, H.; Dixneuf, P. H.; Beller, M. Chem. Eur. J. 2011, 17, 106–110; (j) Wu,
X.-F.; Neumann, H.; Beller, M. Adv. Synth. Catal. 2011, 353, 788–792; (k) Wu, X.-
F.; Jiao, H.; Neumann, H.; Beller, M. ChemCatChem 2011, 3, 726–733; (l) Wu, X.-
F.; Sundararaju, B.; Anbarasan, P.; Neumann, H.; Dixneuf, P. H.; Beller, M. Chem.
Eur. J. 2011, 17, 8014–8017; (m) Wu, X.-F.; Schranck, J.; Neumann, H.; Beller, M.
Chem. Eur. J. 2011, 17, 12246–12249.
5. Typical reaction procedure for carbonylation reaction of aryl iodides:
[(Cinnamyl)PdCl]2 (5 mol %) and AsPh3 (10 mol %) were transferred into a vial
(4 mL reaction volume) equipped with a septum, a small cannula and a stirring
bar. After the vials were purged with argon, 1,4-dioxane distilled from sodium
ketyl, 2 ml, iodobenzene (1 mmol), and HMDS (2 mmol) were injected into the
vial by syringe. Then, the vial was placed in an alloy plate, which was transferred
into a 300 mL autoclave of the 4560 series from Parr InstrumentsÒ under argon
atmosphere. After flushing the autoclave three times with CO, a pressure of
10 bar was adjusted and the reaction was performed for 16 h at 110 °C. Due to
the sensitivity of the products no isolation was performed and characterization
was done by GC–MS. Determination of the yield was done using the calibration
factor of benzoyltrimethyl silane.
6. For reviews on palladium-catalyzed carbonylations, see: (a) Grigg, R.; Mutton, S.
P. Tetrahedron 2010, 66, 5515–5548; (b) Brennführer, A.; Neumann, H.; Beller, M.
Angew. Chem., Int. Ed. 2009, 48, 4114–4133; (c) Brennführer, A.; Neumann, H.;
Beller, M. ChemCatChem 2009, 1, 28–41; (d) Skoda-Földes, R.; Kollár, L. Curr. Org.
Chem. 2002, 6, 1097–1119; (e) Beller, M.; Cornils, B.; Frohning, C. D.;
Kohlpaintner, C. W. J. Mol. Catal. A: Chem. 1995, 104, 17–85; (f) Wu, X.-F.;
Neumann, H.; Beller, M. Chem. Soc. Rev. 2011, 40, 4986–5009.
Acknowledgments
The authors thank the state of Mecklenburg-Vorpommern, the
Bundesministerium für Bildung und Forschung (BMBF), and the
DFG (Leibniz price) for the financial support. We also thank Drs.
W. Baumann, C. Fischer (LIKAT) for the analytical support.
References and notes
1. (a) Brook, A. G.; Mauris, R. J. J. Am. Chem. Soc. 1957, 79, 971–973; (b) Ricci, A.;
Degl’Innocenti, A. Synthesis 1989, 647–660; (c) Page, P. C. B.; Klair, S. S.;
Rosenthal, S. Chem. Soc. Rev. 1990, 19, 147–195; (d) Cirillo, P. F.; Panek, J. S. Org.
Prep. Proced. Int. 1992, 24, 555–582; (e) Najera, C.; Yus, M. Org. Prep. Proced. Int.
1995, 27, 385–456; (f) Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti,
G.; Ricci, A. Gazz. Chim. Ital. 1997, 127, 619–628; (g) Bonini, B. F.; Comes-
Franchini, M.; Fochi, M.; Mazzanti, G.; Ricci, A. J. Organomet. Chem. 1998, 567,
181–189; (h) Page, P. C. B.; McKenzie, M. J.; Klair, S. S.; Rosenthal, S. In The
Chemistry of Organosilicon Compounds; Patai, S., Rappoport, Z., Eds.; Wiley:
Chichester, UK, 1998; Vol. 2, p 1599. Part 2.
2. For selected synthetic applications of acyl silanes, see: (a) Degl’Innocenti, A.;
Pike, S.; Walton, D. R. M. J. C. S. Chem. Commun. 1980, 1201–1202; (b) Page, P. C.
B.; Rosenthal, S.; Williams, R. V. Tetrahedron Lett. 1987, 28, 4455–4456; (c) Tarr,
J. C.; Johnson, J. S. Org. Lett. 2009, 11, 3870–3873; (d) Mattson, A. E.; Scheidt, K. A.
Org. Lett. 2004, 6, 4363–4366; (e) Lianghu, X.; Nicewicz, D. A.; Johnson, J. S. Org.
Lett. 2002, 4, 2957–2960; (f) Cunico, R. F.; Maity, B. C. Org. Lett. 2003, 5, 4947–
4949; (g) Chang, S.-Y.; Jiaang, W.-T.; Cherng, C.-D.; Tang, K.-H.; Huang, C.-H.;
Tsai, Y.-M. J. Org. Chem. 1997, 62, 9089–9098; (h) Obora, Y.; Nakanishi, M.;
Tokunaga, M.; Tsuji, Y. J. Org. Chem. 2002, 67, 5835–5837; (i) Tarr, J. C.; Johnson,
J. S. J. Org. Chem. 2010, 75, 3317–3325; (j) Mattson, A. E.; Bharadwaj, A. R.; Zuhl,
7. For selected examples using AsPh3 as ligand, see: (a) Okura, K.; Matsuoka, S.;
Goto, R.; Inoue, M. Angew. Chem., Int. Ed. 2010, 49, 329–332; (b) Paterson, I.;
Findlay, A. D.; Noti, C. Chem. Commun. 2008, 6408–6410; (c) Smith, A. B., III;
Razler, T. M.; Pettit, G. R.; Chapuis, J.-C. Org. Lett. 2005, 7, 4403–4406.